King Fahd University of Petroleum & Minerals Department of Math and Stat Math 131 Semester 172 * Final Exam

ways can two pe	mly select the two car		ualified for the positi		
			the positions. now in	any unierent	
Å) 360 ways	B) 30 ways	C) 720 ways	D) 15 ways	E) 8 ways	
, ,	, ,	, ,	, ,	, ,	
2) The table display	s the probabilities for	each of the six outco	mes when rolling a pa	articular unfair	2)
die. Suppose tha	t the die is rolled once				-
Outcome		2 4	5 6		
Outcome Probability	1 2 .1 .1	3 4 .1 .2	5 6 .2 .3		
Tiobability	.1 .1	.1 .2	.2 .0		
Events X, Y, Z, a	nd W are defined as fo	bllows.			
X: {The number i					
Y: {The number i					
	s less than or equal to				
W: {The number	is greater than or equ	al to 5}			
Identify one pair	of independent event	S			
A) Y and W	B) Y and Z	C) X and Y	D) X and W	E) Z and W	
,	,	,	,	,	
3) The probability t	hat house sales will ir	crease in the next 6 n	onths is estimated to	be 0.25. The	3)
	he interest rates on he				•
0.74. The probab	ility that house sales o	r interest rates will g	o up during the next 6	6 months is	
estimated to be 0	.89. What is the proba	bility that house sale	s will increase but inte	erest rates will not	
during the next θ	months?				
A) 0.15	B) 0.51	C) 0.89	D) 0.065	E) 0.10	
,	3 green, 2 yellow, and				4)
-	the probability the s	econd one is yellow, ؤ			
A) $\frac{2}{7}$	B) $\frac{2}{11}$	C) $\frac{1}{5}$	D) $\frac{1}{10}$	E) $\frac{4}{5}$	
1	11	5	10	0	
		1 1 5 4 3	11 1.		=`
		ach week. Prices for th	he weekly shipments	of frogs follow the	5)
5) A lab orders a sh	W:				
5) A lab orders a sh distribution belo					
distribution belo	10.00 \$12.50 \$1	5.00			
distribution belo Price \$		5.00			
distribution belo Price \$		5.00 35			

6) We know that 95% of the population of all Business students consider statistics to be an exciting subject. Suppose we randomly and independently selected 30 students from the population. Find the probability of observing 29 or more students who consider statistics to be an exciting subject. Round to six decimal places.						
A) 0.446458	B) 0.553542	C) 0.214639	D) 0.338903	E) 0.656321		
7) The probability that an individual is left-handed is 0.12. In a class of 10 students, the mean and standard deviation of the number of left-handed students rounded to the nearest hundredth are respectively,						
A) 10 , 1.03	B) 1.2 , 1.1	C) 1.2 , 1.03	D) 10 , 1.1	E) 1.1 , 1.03		
8) We know that the length of time it takes a student to find a parking spot in a certain parking lot follows a normal distribution with a mean of 3.5 minutes and a standard deviation of 1 minute. Find the probability that a randomly selected student will take between 2 and 4.5 minutes to find a parking spot in that parking lot.						
A) 0.7745	B) 0.0919	C) 0.4938	D) 0.2255	E) 0.8062		
9) The amount spent			-	udents	9)	
\$400, \$350, \$600, A) \$400	\$525, \$420, and \$4 B) \$465	C) \$450	D) \$600	E) \$435		
10) Given the sample: 4, 3, 8, 9, 7, 10 The sample standard deviation is						
A) 2.787	B) 2.145	C) 3.012	D) 2.993	E) 1.734		
11) For some value of $Z > 1$, the probability that a standard normal variable is between 1 and Z is 0.0357. What is the value of Z?						
A) 1.47	B) 0.81	C) 0.18	D) 1.30	E) 1.16		
12) Suppose consumers purchase <i>q</i> units of a manufacturer's product when the price per unit (in dollars) is 60 – 0.5 <i>q</i> . If no more than 75 units can be sold, then the number of units that must be sold in order that sales revenue be \$1000 is					12)	
A) 40.	B) 50.	C) 20.	D) 25.	E) 75.		
13) A company will manufacture a total of 5000 units of its product at plants A and B. At plan A the unit cost for labor and material combined is \$2.50, while at plant B it is \$3.00. The fixed costs at plant A are \$6000 and at plant B they are \$8000. Between the two plants the company has decided to allot no more than \$28,000 for total costs. The minimum number of units that must be produced at plant A is						
A) 2000.	B) 2546.	C) 1871.	D) 2545.	E) 2500.		
14) The supply and de	mand equations for a	product are $p = \frac{3}{100}$	$q + 6 \text{ and } p = -\frac{1}{50}q +$	- 14, respectively,	14)	
where q represents number of units and p represents price per unit in dollars. If a tax of \$1.00 per unit is imposed on the manufacturer, determine the new equilibrium price.						
A) \$11.4	B) \$11.8	C) \$10.8	D) \$11.2	E) \$10.4		

\$3000 now, \$2	2000 in 3 years, \$2000 Syment be if an intere) in 6 years, and	l a final payme	ent at the end of 8	³ years. What	10)
A) \$ 5000.0			3273.1	D) \$ 3237.0	E) \$1282.9	
6) Determine the	e effective rate equiv	alent to an ann	ual rate of 7 %	compounded co	ntinuously.	16)
A) 8.33 %	B) 7.25 %	C) 7.	00 %	D) 6.33 %	E) 5.11 %	
account earns	ing and gaining emp 6.15% compounded	monthly and y	ou deposit \$2	50 into this accou		17)
	what will the amoun	5	2			
A) \$ 11,993	B) \$ 48,856	6 C) \$	19,6335	D) \$ 129,000	E) \$ 633,252	
	as two different loca he daily production					18)
	ig costs for each loca					
· ·	e orders at minimun		5		I	
	Location 1	Location 2	Minimum N	Jumber		
Model 1	60/day	60/day	2400			
Model 2	40/day	80/day	2000			
Model 3	60/day	40/day	1800			
Daily Cost	\$16,000	\$12,000				
A) 15	B) 10	C) 20)	D) 30	E) 25	
9) Using the sim maximize	plex method to					19)
	$Z = x_1 + 4x_2 + x_3$					
subject to						
·	$x_1 + x_2 + x_3 \le 6$					
	$x_1 - x_2 - 2x_3 \le 2$					
	$x_1, x_2, x_3 \ge 0$,					
the maximum	r value of Z is					
A) 2	B) 24	C) 20)	D) 16	E) 9	

15) A debt of \$12,000, which is due 10 years from now, is instead to be paid off by four payments:

15)

20)

20) If the odds in favor of an event *E* are 2:7, find P(E').

A)
$$\frac{2}{9}$$
 B) $\frac{5}{7}$ C) $\frac{7}{9}$ D) $\frac{2}{7}$ E) $\frac{3}{5}$