King Fahd University of Petroleum & Minerals Department of Math and Stat Math 131 Semester 172 * Exam 2

lame_				ID N	0	Sec.	No
	1)	An interest rate of 8% A) 9.2456%	5 compounded semi B) 8.16%	iannually correspor C) 12%	nds to an effective ra D) 8.2031%	te of E) 8%	1)
	2)	If an initial investmer compounded quarter	nt of \$4000 grows to ly, that was earned	\$5718 in six years, by the money.	find the nominal rat	te of interest,	2)
		A) 6.0 %	B) 6.5 %	C) 9.2 %.	D) 12.0 %	E) 5.2%	
	3)	At an annual rate of 8 principal to double?	3% compounded co	ntinuously, in how	many years would i	t take for a	3)
		A) 7.7	B) 7.3	C) 6.5	D) 9.2	E) 8.7	
	4)	A debt of \$2000 due f second payment at th interest rate is 5% cor	our years from now e end of two years. npounded annually	/ is to be repaid by How much should /?	a payment of \$1000 the second paymen	now and a t be if the	4)
		A) \$ 671.61	B) \$ 845.23	C) \$ 683.24	D) \$ 711.56	E) \$ 888.21	
	5)	For an initial investm the end of the indicat Year Cash Flor 1 \$4000	ent of \$10,000, supp ed years: w	bose a company gua	arantees the followir	ng cash flows at	5)
		3 \$8000 Assume an interest ra A) \$ 2000.00	ate of 5% compound B) \$ 1254.67	led annually. The n C) \$ 848.43	et present value of t D) \$ 639.44	he cash flows is E) \$ 720.23	
	6)	In five years a compa place a single deposit the equipment. If the continuously, determ A) \$ 54,234	ny will purchase eq into a savings acco account earns inter- ine the deposit to th B) \$ 71,332	uipment costing \$1 ount now so that its est at an annual rat ne nearest dollar. C) \$ 60,653	100,000. The compar future value will eq e of 10% compounde D) \$ 53,221	y decides to ual the cost of ed E) \$40,538	6)
	_`			,	,	,	_`
	7)	To purchase land for the end of every six-r semiannually, what is	an industrial site, a month period for 10 s the corresponding	company agrees to years. If the interes cash value of the la) pay \$20,000 down a st rate is 10% compo and?	and \$10,000 at unded	7)
		A) \$ 144,622	B) \$ 105,262	C) \$ 156,550	D) \$ 100,287	E) \$ 120,002	
	8)	Suppose an annuity a compounded annuall	<i>lue</i> consists of 6 yea ly. Determine the fu	rly payments of \$20 uture value at the e	00 and the interest ra nd of 6 years.	ite is 5%	8)
		A) \$ 1561.81	B) \$ 1360.38	C) \$ 1160.38	D) \$ 1490.99	E) \$ 1428.40	
	9)	Suppose a person inv every quarter for four	rests \$20,000 in a bu r years. If the invest	siness that guarant ment earns interest	ees the same cash flo at the rate of 16% co	ow at the end of ompounded	9)
		quarterly, then each o A) \$ 2341.23	cash flow is B) \$ 1716.40	C) \$ 1917.39	D) \$ 916.40	E) \$ 1527.52	

10) Solving the problem,

Maximize Z = 4x + 6ySubject to $\begin{cases}
x + y \ge 3 \\
y \le 5 \\
x \le 4 \\
x \ge 0, y \ge 0
\end{cases}$

the maximum value of Z is

A) 46	B) 44	C) 64	D) 56	E) 48
	=,	-,	-,	_,

11) A manufacturer produces two products, product A and product B. Both products require processing on Machines I and II. The number of hours needed to produce one unit is given by the following chart:

	Machine I	Machine II
Product A	2 hrs	3 hrs
Product B	1 hrs	4 hrs

Machine I is available for at most 1000 hours and Machine II is available for at most 2500 hours. If the profit made on product A is \$20 / unit and the profit made on product B is \$25 / unit. Find the maximum profit.

A) \$17,000	B) \$ 14,000	C) \$ 16,625	D) \$ 16,000	E) \$ 15,625
-------------	--------------	--------------	--------------	--------------

12) Using the corner-point technique to maximize

$$Z = x + 2y$$

subject to

$$y \ge x + 3$$

$$x + 2y \le 24$$

$$x, y \ge 0.$$

the maximum value of Z occurs

- A) only at the point (6,9)
- B) only at the point (6,12)
- C) at any point on the line segment joining (6,9) and (0,12)
- D) at any point on the line segment joining (0,3) and (0,12)
- E) at any point on the line segment joining (0,3) and (6,9)

13) In the initial simplex tableau below, find the pivot entry.

^x 1 ^x 2 ^s 1 ^s 2	2 Z			
$ \begin{array}{ccccccc} s_{1} & -1 & 2 & 1 & 0 \\ s_{2} & 10 & 6 & 0 & 1 \\ \hline -3 & -8 & 0 & 0 \\ z \end{array} $	0 8 0 12 1 0			
A) 0	B) -1	C) 10	D) 6	E) 2

10)

11) _____

12) _____

13)

14) In the initial si $x_1 x_2 s_1 s_1$	14)							
$ \begin{array}{cccc} {}^{S_{1}} \left[\begin{array}{cccc} -1 & 2 & 1 \\ {}^{S_{2}} \left[\begin{array}{cccc} -1 & 0 & 0 \\ \hline 10 & 6 & 0 \\ \hline -3 & -8 & 0 \end{array} \right] \end{array} \right] $	$ \begin{array}{c ccc} 0 & 0 & 8 \\ 1 & 0 & 12 \\ \hline 0 & 1 & 0 \end{array} $							
A) x ₁	B) <i>s</i> ₂	C) <i>s</i> ₁	D) x ₂	E) Z				
15) Maximize					15)			
	$Z = x_1 - 2x_2 + 3x_3$							
subject to								
	$2x_1 + x_2 + 2x_3 \le 7$	10						
	$x_1 - x_2 + x_3 \le$	8						
	x ₁ , x ₂ , x ₃ ≥	0						
A) 15	B) 5	C) 10	D) 0	E) 20				
16) The dual of Minimize					16)			
	$Z = x_1 + 3x_2$							
subject to								
	$x_1 - 2x_2 \ge 4$							
	$3x_1 + x_2 \ge 1$							
	$x_1, x_2 \ge 0$							
is:								
A) Maximize $W = y_1 + 3y_2$ subject to $y_1 - 2y_2 \le 4$; $3y_1 + y_2 \le 1$; $y_1, y_2 \ge 0$.								
B) Maximize $W = y_1 + 3y_2$ subject to $y_1 + 3y_2 \ge 4$; $-2y_1 + y_2 \ge 1$; $y_1, y_2 \ge 0$.								
C) Maximize $W = 4y_1 + y_2$ subject to $y_1 + 3y_2 \le 1$; $-2y_1 + y_2 \le 3$; $y_1, y_2 \ge 0$.								

D) Maximize $W = 4y_1 + y_2$ subject to $y_1 - 2y_2 \ge 1$; $3y_1 + y_2 \ge 3$; $y_1, y_2, \ge 0$.

E) Maximize $W = 4y_1 + y_2$ subject to $y_1 + 3y_2 \ge 1$; $-2y_1 + y_2 \ge 3$; $y_1, y_2 \ge 0$.