Quiz: 1 Math 102 Semester: 172 Duration: 45 minutes

Full Name:

ID:

Q1. Given that $\int_1^3 f(3x+1) dx = 9$ and $\int_2^5 f(2x) dx = 8$. Find $\int_2^4 f(x) dx$ **Q2.** Estimate the area under the graph of $f(x) = x - \ln x^2$ for $1 \le x \le 7$, using three rectangles and taking the sample points to be the midpoints. Q3. Evaluate

a)
$$\int_{0}^{5} f(x) dx$$
 where $f(x) = \begin{cases} 1 - x & \text{for } 0 \le x \le 1 \\ -\sqrt{4 - (x - 3)^2} & \text{for } 1 \le x \le 5 \end{cases}$
b) $\int_{-3}^{3} (x \sin^2 x + \cos^2 x) dx$ c) $\int \tan^2 x dx$ d) $\int \sqrt{\frac{5x - 1}{x^5}} dx$

Q4. If $f(x) = \int_0^{\sin x} \sqrt{1+t^2} dt$ and $g(y) = \int_3^y f(x) dx$, then find $g''(\pi/6)$. **Q5.** The velocity function for a particle moving along a line is $v(t) = t^2 - 2t - 8$ (m/s). Find the distance traveled by the particle during the time interval [1, 6]. **Q6.** Determine a region whose area is equal to $\lim_{n \to \infty} \sum_{k=1}^{n} \frac{4\pi}{n} \tan\left(1 + \left(\frac{k\pi}{4n}\right)^2\right)$.