1.
$$\int_0^1 \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \, dx =$$

- (a) $\frac{\pi^2}{8}$
- (b) $\frac{\pi}{4}$
- (c) $\frac{\pi^2}{2}$
- (d) $\frac{\pi}{6}$
- (e) $\frac{\pi^2}{4}$

2. If
$$f(x) = \int_{x^2}^1 \frac{t}{1+t} dt$$
, then $f'\left(\frac{1}{2}\right) =$

- (a) $-\frac{1}{5}$
- (b) $\frac{1}{5}$
- (c) $-\frac{1}{3}$
- (d) $\frac{1}{3}$
- (e) $\frac{1}{4}$

- 3. Using two rectangles and taking the sample points to be the midpoints, then the estimate of the area under the graph of $f(x) = \sin x$ from x = 0 to $x = \pi$ is equal to
 - (a) $\frac{\pi\sqrt{2}}{2}$
 - (b) $\frac{\pi\sqrt{2}}{4}$
 - (c) $\frac{\pi\sqrt{3}}{2}$
 - (d) $\frac{\pi\sqrt{3}}{4}$
 - (e) 0

- 4. The length of the curve $y = \ln(\sec x)$, $0 \le x \le \frac{\pi}{4}$ is equal to
 - (a) $\ln(\sqrt{2}+1)$
 - (b) $\ln \sqrt{2}$
 - (c) 0
 - (d) $\ln(\sqrt{2}-1)$
 - (e) $2 \ln \sqrt{2}$

5.
$$\int \frac{5}{(3x-1)(x+2)} \, dx =$$

(a)
$$\frac{5}{7} \ln \left| \frac{3x-1}{x+2} \right| + c$$

(b)
$$\frac{1}{7} \ln \left| \frac{3x-1}{x+2} \right| + c$$

(c)
$$\frac{7}{5} \ln \left| \frac{x+2}{3x-1} \right| + c$$

(d)
$$\frac{3}{5} \ln \left| \frac{x+2}{3x-1} \right| + c$$

(e)
$$\frac{2}{5} \ln \left| \frac{3x-1}{x+2} \right| + c$$

$$6. \qquad \int x \, 3^{-x} \, dx =$$

(a)
$$\frac{-x \, 3^{-x}}{\ln 3} - \frac{3^{-x}}{(\ln 3)^2} + c$$

(b)
$$\frac{x \, 3^{-x}}{\ln 3} + \frac{3^{-x}}{(\ln 3)^2} + c$$

(c)
$$\frac{x}{3^x} + \frac{\ln 3}{3^x} + c$$

(d)
$$\frac{x}{3^x} - \frac{\ln 3}{3^x} + c$$

(e)
$$x \ln 3 + \frac{3^x}{\ln 3} + c$$

- 7. The area of the region enclosed by the curves $y = 12 x^2$ and $y = x^2 6$ is equal to
 - (a) 72
 - (b) 70
 - (c) 68
 - (d) 66
 - (e) 64

- 8. The sequence $\left\{\tan\left(\frac{2n\pi}{1+8n}\right)\right\}_{n=1}^{\infty}$
 - (a) converges to 1
 - (b) converges to 0
 - (c) converges to -1
 - (d) diverges
 - (e) converges to $\frac{\pi}{2}$

9. The sum of the series

$$1 + 0.4 + 0.16 + 0.064 + \dots$$

is equal to

- (a) $\frac{5}{3}$
- (b) $\frac{7}{3}$
- (c) $\frac{9}{2}$
- (d) $\frac{7}{2}$
- (e) $\frac{5}{2}$

10. The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^5}$ is

- (a) a convergent alternating series
- (b) a convergent p series
- (c) a divergent p series
- (d) a convergent geometric series
- (e) a divergent geometric series

11. $\int_0^2 x^2 \sqrt{4 - x^2} \, dx =$

- (a) π
- (b) 2π
- (c) 3π
- (d) $\frac{\pi}{4}$
- (e) $\frac{\pi}{2}$

12. How many terms of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ do we need to add so that |error| < 0.0001

- (a) 100
- (b) 98
- (c) 96
- (d) 94
- (e) 92

13. $\int \cot^5 \theta \sin^4 \theta \, d\theta =$

(a)
$$\ln |\sin \theta| - \sin^2 \theta + \frac{1}{4} \sin^4 \theta + c$$

- (b) $\ln |\sin \theta| + \sin^3 \theta + \sin^4 \theta + c$
- (c) $\ln |\sin \theta| \sin^3 \theta \sin^4 \theta + c$
- (d) $\ln |\sin \theta| + 2 \sin^2 \theta \frac{1}{3} \sin^3 \theta + c$
- (e) $\ln |\sin \theta| \sin^2 \theta + \sin^4 \theta + c$

- 14. The area of the surface obtained by rotating the curve $x = \frac{1}{3}(y^2 + 2)^{3/2}, 1 \le y \le 2$ about the x-axis is equal to
 - (a) $\frac{21\,\pi}{2}$
 - (b) $\frac{19\,\pi}{2}$
 - (c) $\frac{23\pi}{2}$
 - (d) $\frac{17\pi}{2}$
 - (e) $\frac{15 \pi}{2}$

- 15. The series $\sum_{k=1}^{\infty} \frac{k \sin^2 k}{1 + k^3}$ is
 - (a) convergent by using the comparison test with $\sum_{k=1}^{\infty} \frac{1}{k^2}$
 - (b) convergent by using the comparison test with $\sum_{k=1}^{\infty} \frac{1}{k}$
 - (c) divergent by using the limit comparison test with $\sum_{k=1}^{\infty} \frac{1}{k^2}$
 - (d) convergent by using the limit comparison test with $\sum_{k=1}^{\infty} \frac{1}{k}$
 - (e) divergent by the integral test

16. The interval of convergence of the series

$$\sum_{n=1}^{\infty} \frac{(x+1)^n}{n \, 2^n}$$

is

- (a) I = [-3, 1)
- (b) I = (-3, 1]
- (c) I = (-3, 1)
- (d) I = [-3, 1]
- (e) I = [-3, 0)

17. Which one of the following series is divergent?

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{n+1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{n^2 + 1}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n+1)}$$

18. Using the definition of Taylor series, the first three nonzero terms of the series for $f(x) = \sin x$ centered at $a = \frac{\pi}{6}$ is

(a)
$$\frac{1}{2} + \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right) - \frac{1}{4} \left(x - \frac{\pi}{6} \right)^2$$

(b)
$$\frac{1}{2} - \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right) + \frac{1}{2} \left(x - \frac{\pi}{6} \right)^2$$

(c)
$$\frac{1}{2} + \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right) + \frac{1}{8} \left(x - \frac{\pi}{6} \right)^2$$

(d)
$$\frac{1}{2} - \frac{\sqrt{3}}{4} \left(x - \frac{\pi}{6} \right) + \frac{1}{2} \left(x - \frac{\pi}{6} \right)^2$$

(e)
$$\frac{1}{2} + \frac{\sqrt{3}}{2} \left(x - \frac{\pi}{6} \right) - \frac{1}{8} \left(x - \frac{\pi}{6} \right)^2$$

19. The Maclaurin Series for the function

$$f(x) = \frac{x^2}{3 - x}$$

is

(a)
$$\sum_{n=0}^{\infty} \frac{x^{n+2}}{3^{n+1}}$$
, $|x| < 3$

(b)
$$\sum_{n=0}^{\infty} \frac{x^{n+1}}{3^{n-1}}, |x| < 3$$

(c)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{3^n}, |x| < 3$$

(d)
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{3^{n+1}}, |x| < 3$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{3^{n+1}}$$

- 20. The improper integral $\int_0^3 \frac{dx}{x-1}$ is
 - (a) divergent
 - (b) convergent and equals $2 \ln 3$
 - (c) convergent and equals ln 3
 - (d) convergent and equals 3 ln 3
 - (e) convergent and equals 4 ln 3

Using the cylindrical shells method, the volume of the solid generated by revolving about the x-axis the region bounded by the three curves y = -x + 2, $y = x^2$ and y = 0 is given by

(a)
$$v = 2\pi \int_0^1 y (2 - y - \sqrt{y}) dy$$

(b)
$$v = 2\pi \int_0^1 y (2 - y + \sqrt{y}) dy$$

(c)
$$v = \pi \int_0^1 y \left[x^4 - (2 - x)^2 \right] dx$$

(d)
$$v = \pi \int_0^1 [(2-x)^2 - x^4] dx$$

(e)
$$v = 2\pi \int_0^1 y (2 + y - \sqrt{y}) dy$$

22.
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n-1}}{3^{2n-1} (2n)!} =$$

- (a) $\frac{3}{2\pi}$
- (b) $\frac{\sqrt{3}}{2}\pi$
- (c) $\frac{-\sqrt{3}}{2}\pi$
- (d) $\frac{2}{3\pi}$
- (e) $\frac{5}{\pi}$

23.
$$\int \cos \sqrt{x} \, dx =$$

(a)
$$2\sqrt{x} \sin \sqrt{x} + 2 \cos \sqrt{x} + c$$

(b)
$$2\sqrt{x} \sin \sqrt{x} - 3 \cos \sqrt{x} + c$$

(c)
$$3\sqrt{x}\sin\sqrt{x} + 2\cos\sqrt{x} + c$$

(d)
$$-3\sqrt{x}\sin\sqrt{x} + 3\cos\sqrt{x} + c$$

(e)
$$\sqrt{x} \sin \sqrt{x} - 2 \cos \sqrt{x} + c$$

24.
$$\int_0^1 x^2 e^{-x^4} dx =$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!(4n+3)}$$

(b)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n! (4n+1)}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n!(4n-3)}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n)!}$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(4n)!(n+1)}$$

- 25. The volume of the solid generated by rotating the region under the curve $y = 2 \sin x$, $0 \le x \le \pi$ around the x-axis is equal to
 - (a) $2\pi^2$
 - (b) 2π
 - (c) $3\pi^2$
 - (d) 4π
 - (e) $5\pi^2$

- 26. The series $\sum_{n=1}^{\infty} \frac{(-1)^n 2^n n!}{(7)(12)(17)\dots(5n+2)}$ is
 - (a) convergent by the ratio test
 - (b) divergent by the ratio test
 - (c) a series for which the ratio test is inconclusive
 - (d) divergent by the root test
 - (e) conditionally convergent

$$27. \quad \lim_{n \to \infty} \frac{1^2 + 2^2 + \ldots + n^2}{3n^3 + 1} =$$

- (a) $\frac{1}{9}$
- (b) $\frac{1}{3}$
- (c) 0
- (d) $\frac{2}{9}$
- (e) ∞

28. Using the integral test, the series $\sum_{n=1}^{\infty} n(1+n^2)^p$ is convergent if

- (a) p < -1
- (b) p < 1
- (c) p > 1
- (d) p > -1
- (e) p = 0

Q	MM	V1	V2	V3	V4
1	a	a	b	b	С
2	a	b	a	е	С
3	a	a	С	е	С
4	a	e	b	e	b
5	a	d	d	d	d
6	a	d	c	d	e
7	a	b	d	е	С
8	a	a	e	С	е
9	a	d	b	a	c
10	a	b	a	С	a
11	a	d	b	a	c
12	a	a	b	е	d
13	a	c	a	e	e
14	a	d	c	e	c
15	a	d	b	С	a
16	a	e	b	a	a
17	a	b	c	a	a
18	a	e	e	a	b
19	a	c	e	е	a
20	a	a	С	С	a
21	a	a	b	d	a
22	a	c	d	е	b
23	a	d	c	a	b
24	a	b	b	d	c
25	a	a	С	b	a
26	a	С	e	d	b
27	a	a	a	a	d
28	a	e	c	b	a