King Fahd University for Petroleum and Minerals Department of Mathematics & Statistics

Term 172 Quiz#1 (2.2 & 2.3)

Math 101 (19)

Full Name:	ID#	Ser#

Q1. Use limits to determine whether or not x = 0 is a vertical asymptote of $f(x) = \frac{x^2 + x}{x^3 - 6x^2}$.

Q2. Evaluate $\lim_{x \to -\sqrt{3}} \left[\frac{1}{4-x^2} \right]$ if it exists and **explain if it does not**. (where [x] is the greatest integer $\leq x$)

King Fahd University for Petroleum and Minerals Department of Mathematics & Statistics

Term 172 Quiz#1 (2.2 & 2.3) Math 101 (19)

full Name:	ID#	Ser#
Q1. Use limits to determine wheth	$\frac{\text{ID#}}{\text{ner or not } x = 1 \text{ is a vertical asymptote}}$	of $f(x) = \frac{x^2 - 2x + 1}{x^2 - x^2}$.
	I	$4x^2+4x-8$
	1	

Q2. Evaluate $\lim_{x\to 0} \frac{x}{2-\sqrt{4+x}}$ if it exists and **explain if it does not**.