King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics STAT-319-Term171-Quiz5A ID: Sec.: Serial:

1. (5-Points) The life in hours of a battery is known to be approximately normally distributed, with standard deviation σ =1.25 hours, a random sample of 20 batteries has a mean life of $\bar{x} = 40.5$ hours. Use α =.05, is there evidence to support the claim that the battery life exceeds 40 hours? Also, find the **P-value** for your test.

Name:

2. (5-Points) A manufacturer of intraocular lenses will certify a new grinding machine if there is evidence that the percentage of polished lenses that contain surface defects does not exceed 2%. A random sample of size 250 lenses contain seven defective lenses.

Formulate and test an appropriate hypothesis to determine whether the machine can be certified. Use α =.05, and find the **P-value**

$$Z = \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \quad or \quad Z = \frac{(\bar{X} - \mu)\sqrt{n}}{S} \quad or \quad T = \frac{(\bar{X} - \mu)\sqrt{n}}{S} \quad or \quad Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

King Fahd University of Petroleum & Minerals			
Department of Mathematics & Statistics			
STAT-319-Term171-Quiz5B			
Name:	ID:	Sec.:	Serial:

1. (5-Points) The life in hours of a battery is known to be approximately normally distributed, with standard deviation σ =1.5 hours, a random sample of 20 batteries has a mean life of $\bar{x} = 40.5$ hours. Use α =.05, is there evidence to support the claim that the battery life exceeds 40 hours? Also, find the **P-value** for your test.

2. (5-Points) A manufacturer of intraocular lenses will certify a new grinding machine if there is evidence that the percentage of polished lenses that contain surface defects does not exceed 2%. A random sample of size 500 lenses contain sixteen defective lenses.

Formulate and test an appropriate hypothesis to determine whether the machine can be certified. Use α =.05, and find the **P-value**

$$Z = \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \quad or \quad Z = \frac{(\bar{X} - \mu)\sqrt{n}}{S} \quad or \quad T = \frac{(\bar{X} - \mu)\sqrt{n}}{S} \quad or \quad Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$