	King Fahd University of Petro	oleum & Minerals		
	Department of Mathemati	cs & Statistics		
	STAT-319-Term171-Quiz3	Α		
Name:	ID:	Sec.:	Serial:	

The amount of cosmic radiation to which a person is exposed to while flying by jet is a random variable having the *normal distribution* with $\mu = 4.35$ mrem and $\sigma = 0.50$ mrem.

a. Find $P\left(\frac{4.02-4.35}{0.50} < Z < \frac{5-4.35}{0.50}\right)$. (3-Points) = P(-0.66 < Z < 1.30)= $\Phi(1.30) - \Phi(-0.66) = 0.903199 - 0.254627 = 0.648572$. From the Standard Normal Table

b. What is the probability that a person on such flight is exposed to **at most** 4.61 mrem? (**3-Points**) $P\left(Z \le \frac{4.61-4.35}{0.50}\right) = P(Z \le 0.52)$ $= \Phi(0.52) = 0.698468$. From the Standard Normal Table

c. If a random sample of 16 passenger are measured on such flights, find the probability that the sample mean radiation measure will be **at most** 4.61 mrem. (**4-Points**)

 $P\left(Z \le \frac{4.61 - 4.35}{0.50/\sqrt{16}}\right) = P(Z \le 2.08)$

 $= \Phi(2.08) = 0.981237$. From the Standard Normal Table

	King Fahd University of Petro	leum & Minerals		
	Department of Mathematics & Statistics			
	STAT-319-Term171-Quiz3B			
Name:	ID:	Sec.:	Serial:	

The amount of cosmic radiation to which a person is exposed to while flying by jet is a random variable having the *normal distribution* with $\mu = 4.35$ mrem and $\sigma = 0.50$ mrem.

a. Find $P\left(\frac{4.00-4.35}{0.50} < Z < \frac{5.02-4.35}{0.50}\right)$. (3-Points) = P(-0.7 < Z < 1.34)= $\Phi(1.34) - \Phi(-0.70) = 0.909877 - 0.241964 = 0.667913$. From the Standard Normal Table

b. What is the probability that a person on such flight is exposed to **at most** 4.64 mrem? (**3-Points**) $P\left(Z \le \frac{4.64-4.35}{0.50}\right) = P(Z \le 0.58)$ $= \Phi(0.58) = 0.719043$. From the Standard Normal Table

c. If a random sample of 16 passenger are measured on such flights, find the probability that the sample mean radiation measure will be **at most** 4.64 mrem. (**4-Points**)

 $P\left(Z \le \frac{4.64 - 4.35}{0.50/\sqrt{16}}\right) = P(Z \le 2.32)$ = $\Phi(2.32) = 0.98983$. From the Standard Normal Table