KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS

Term 171

STAT 302 Exam #1

Name:

ID #:

- ➤ Show all details.
- > If there is a rule you are using, write down that rule.
- Always give reasons
- > Answers without justification are not accepted
- > Do not make statements without proof.

Some Useful Formula

$$\sum_{1}^{n} i = \frac{n(n+1)}{2}, \sum_{1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6},$$

The Gamma Density $f_Y(y) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} y^{\alpha-1} e^{-\frac{y}{\beta}}$,

where
$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx$$
, $E(Y) = \alpha \beta$, $V(Y) = \alpha \beta^2$, $M_Y(t) = (1 - \beta t)^{-\alpha}$

Question	Maximum Marks	Marks Obtained
1	4	
2	6	
3	6	
4	4	
5	7	
6	6	
7	7	
Bonus	10	
Total	40	

1) Let Y_1, Y_2, Y_3 be a random sample from a Bernoulli distribution with parameter *p*. Is the statistic $Y_1Y_2 + Y_3$ sufficient for *p*? Explain. (3 marks)

2) Let Y_1, \dots, Y_n be a random sample from $f_Y(y|\theta) = \begin{cases} \frac{1}{\theta}e^{-y/\theta}, & y > 0\\ 0 & otherwise \end{cases}$; $\theta > 0$

Find an unbiased estimator for $\frac{1}{\theta}$. (5 marks)

3) Let Y_1, \dots, Y_n be a random sample from $f_Y(y|\theta) = \begin{cases} e^{-(y-\theta)}, & y > 0\\ 0 & otherwise \end{cases}$ a) Is $Y_{(1)}$ a sufficient statistic for θ ? Explain (2 marks)

b) Is $Y_{(1)}$ an unbiased estimator for θ ? Explain. (2 marks)

c) Find $MSE(Y_{(1)})$.

4) Let Y_1, \dots, Y_n be a random sample from a distribution with $E(Y) = \mu$, and finite variance σ^2 . Let $\widehat{\theta_1} = \overline{Y}$, and $\widehat{\theta_2} = \frac{2}{n(n+1)} \sum_{i=1}^{n} iY_i$.

a) Show that $\widehat{\theta_2}$ is consistent for estimating μ . (2 marks)

b) Find the relative efficiency of $\widehat{\theta_1}$ to $\widehat{\theta_2}$.

(2 marks)

(2 marks)

- 5) Suppose that X_1, \dots, X_n and Y_1, \dots, Y_n are independent random samples from populations with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , respectively.
 - a) Show that the random variable

$$U_n = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{(\sigma_1^2 + \sigma_2^2)}/n}$$

satisfies the conditions of the central limit theorem, and thus its conclusion.

(3 marks)

b) Assuming part (a) above, consider the following experiment which is designed to test whether operator A or operator B gets the job of operating a new machine. Each operator is timed on 50 independent trials involving performance of a certain task. If the sample means for the 50 trials differ by more than 1 second, the operator with the smaller mean time gets the job. If the standard deviations of times for both operators are assumed to be 2 seconds, what is the probability that operator A will get the job even though both operators have equal ability? (4 marks)

- 6) In a study of consumer satisfaction involving 1030 customers, it is found that 78% of consumers enjoy ads for product A.
 - a) Construct a 90% confidence interval for the proportion of consumers who enjoy ads for product A. (2 marks)

b) Do you think that "more than 75% of all consumers enjoy ads for product A? *(2 marks)*

- c) How many consumers should be interviewed in order to estimate the proportion of consumers who enjoy ads for product A, correct to within 0.02, with probability 0.99?
 (2 marks)
- 7) A precision instrument is guaranteed to read accurately to within 2 units. A sample of four instrument readings on the same object yielded the measurements 353, 351, 351, and 355.
 a) Find a 90% confidence interval for the population standard deviation. (3 marks)

b) What assumptions are necessary?

(2 marks)

c) Does the guarantee seems reasonable? Explain.

Let Y_1, \dots, Y_n be a random sample from $f_Y(y|\theta)$ with a continuous CDF $F_Y(y|\theta)$. Show that $-\sum lnF_Y(y_i|\theta)$ is a pivotal quantity.