Assignment 1

- 1) Let $m, n \in \mathbb{N}$. Express $(m n + 1)_n$ in terms of the factorial function.
- 2) If $f \in C[0,1]$ and $I_0^{\sqrt{2}} f$ is constant on (0,1), find f. Is it unique?
- 3) Find the most general continuous function that satisfies $D_0^{\alpha}u(t) = 0, t > 0$.
- 4) Calculate $D_1^{3/2}[t(t-1)^{1/4}]$.

Assignment 2

Let $y(x) = x^3$ and

$$w(x) = \begin{cases} y(x), & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

- 1. Write explicitly the difference $(\Delta_h^3 + \Delta_{-h}^3) y$ and compare it with y'''.
- 2. For $\alpha > 0$, $\alpha \notin \mathbb{N}$, write the first 4 terms of each of the differences: $\Delta_h^{\alpha} y$, $\Delta_{-h}^{\alpha} y$, $\Delta_{h,0+}^{\alpha} y$, and $\Delta_{h,1-}^{\alpha} y$.
- 3. Use these differences to approximate $\frac{d^{\alpha}w}{d|x|^{\alpha}}$ at x = 0.6 when $\alpha = \sqrt{2}$ and h = 0.1.

Assignment 3

Use the series expansions to show the following:

- 1. $E_{m,\beta-m}(t^m) = t^m E_{m,\beta}(t^m), \beta = 0,1,2,...,m.$
- 2. $D_0^{\alpha} \left[\cosh\left(\sqrt{\lambda} t\right) \right] = t^{-\alpha} E_{2,1-\alpha}(\lambda t^2), \alpha > 0.$
- 3. $y(t) = E_{2,1}(t^2)$ satisfy y'' y = 0.
- 4. Use **mlf** Matlab function to plot $E_{0.5,1.2}(\sqrt{t})$. Is the function concave up? Is it completely monotone?

Assignment 4

Consider the equation

$$D^{\alpha}y = 2 x^{\beta}y, \qquad 1 < \alpha < 2.$$

- 1. State the formula for the fundamental system of solutions for any $\beta \in \mathbb{R}$.
- 2. State the formula for the fundamental system of solutions when $\beta = -\alpha$.
- For α = -β = 4/3, by direct substitution into the equation (not formula), find ν > 0 such that x^ν is a solution. Compare with the solutions in parts (1) and (2). (Hint. Graph of Gamma function could be used.)
- 4. For $\beta = 0$, use Laplace transform to find the fundamental system of solutions. Compare with the solutions in part (1).

Assignment 5

Note: Section and equation references are as in Kilbas et al. χ is the characteristic function.

Problem 1. (7.6.1 Dynamics of a Sphere Immersed in an Incompressible Viscous Fluid)

- A. Provide a one-page description of the physical problem containing the following items.
 - Diagram
 - Dynamics and quantities under consideration
 - General model considered and its solution
- B. Consider the following model problem:

Use Laplace transform to solve this problem and compare with the solution for (7.6.12) provided by Kilbas et al.

C. Plot in one figure the solutions for $\alpha = 0.6, 0.8, 1.0$, that correspond to $d = 0, \quad \beta = 0.5, \quad f(t) = 8 \chi_{[0,1]}, \quad \mu = \lambda = 1.$

Describe the dynamics.

D. Plot in one figure the solutions for
$$\beta = 0.5, 0.7, 0.9$$
, that correspond to

$$d = 0$$
, $\alpha = 1.0$, $f(t) = 8 \chi_{[0,1]}$, $\mu = \lambda = 1$.

Describe the dynamics.

Problem 2. (7.6.2 Oscillatory Processes with Fractional Damping (Bagley-Torvik equations))

- A. Provide a one-page description of the physical problem as in Problem 1.
- B. Consider the following model problem:

Use Laplace transform to solve this problem and compare with the solution (7.6.36) for (7.6.19).

C. Plot in one figure the solutions for $\alpha = 1.6, 1.8, 2.0$ that correspond to

$$d_0 = d_1 = 0, \qquad \beta = 1.5, \qquad f(t) = 2 \chi_{[0,1]}, \qquad \mu = \lambda = 0.5.$$

Describe the oscillatory process. See Figure 8.4 by Podlubny.

D. Plot in one figure the solutions for $\beta = 1.5, 1.7, 1.9$, that correspond to

$$d_0 = d_1 = 0, \qquad \alpha = 2.0, \qquad f(t) = 2 \chi_{[0,1]}, \qquad \mu = \lambda = 1$$

Describe the oscillatory process.

Assignment 6 Talk Report (max. 3 pages)

Prepare a report on your selected talk that includes the following:

- Topic: description, motivation, significance, methods
- Results: clarity of the results and appropriateness of the interpretations
- Future work, recommendations, and extensions suggested by the speaker
- Relevance of the talk to the course, and whether the talk enhanced your learning
- What did you like the most and the least?
- Any other comments, observations, ...