King Fahd University of Petroleum & Minerals(V-1)Department of Mathematics & StatisticsMath 321Math 321Final ExamThe First Semester of 2017-2018 (171)

Time Allowed: 180 Minutes

Name:	ID#:	
Instructor:	_ Sec #:	Serial #:

- Mobiles are not allowed in this exam.
- Write all steps clear.

Question $\#$	Marks	Maximum Marks
1		15
2		20
3		20
Total		50

Question $\#$	Answer	Marks
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
Total		70
	Grand Total out of 130	

0

Q:1 (15 points) Use second order central difference approximations of y' and y'' to write difference equations for the boundary value problem

 $y'' + 3y' - 2y = 2x + 3, \ 0 \le x \le 1, \ y(0) = 2, \ y(1) = 1 \text{ with } h = 0.2$

Write these difference equations into matrix form.

Q:2 (10+10 points) (a) Let $\{(x_i, y_i), i = 1, 2, 3, \dots, n\}$ be a given data set of n points. Find the formulas for a_0 and a_1 such that $S_r = \sum_{i=1}^n [y_i - a_0 - a_1 x_i]^2$ is minimal.

(b) Use the following data $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0.5 & 2.5 & 3.25 & 3.5 & 5.25 & 5 \end{bmatrix}$ to find a best fit $y = a_0 + a_1 x$.

- **Q:3** (8+7 points) (a) Find LU factorization of the matrix $A = \begin{bmatrix} 2 & 2 & 6 & 8 \\ 2 & 3 & 4 & 5 \\ 1 & 1 & -1 & 2 \\ -1 & -1 & 1 & 5 \end{bmatrix}$.
 - (b) Solve the system $LU\bar{x} = b$, where $x = (x_1, x_2, x_3, x_4)$ and b = (2, 1, 1, 6).

- **Q:1** Using three–point central difference formula, the approximate value of $f''(\frac{\pi}{6})$ for
 - $f(x) = \ln(\sin x)$ with h = 0.05 is equal to:
 - (A) 1.2315
 - (B) 0.7689
 - (C) 2.7890
 - (D) -4.0168
 - (E) -6.0231

Q:2 The fixed points of $x = 2 \sin x$ in the interval $[0, \pi]$ with initial guess $x_o = 1$ and Tolerance = 10^{-1} is approximately equal to:

(A) π

- (B) 1.8697
- (C) $\pi/4$
- (D) 1.0015
- (E) 2.3456

Q:3 Using Bisection method, number of iterations necessary to find a root of

 $f(x) = x^3 + 4x^2 - 10 = 0$ with accuracy 10^{-3} using $a_1 = 1$ and $b_1 = 2$ are:

- (A) 5
- (B) 6
- (C) 7
- (D) 8
- (E) 10

Q:4 Using the data points, (6,3), (7,5), (8,1) second order interpolating polynomial using Lagrange interpolation or Newton's divided difference interpolation, is:

- (A) $-3x^2 + 41x 135$
- (B) $3x^2 + 45x 135$
- (C) $2x^2 + 41x + 145$
- (D) $-5x^2 + 41x + 125$
- (E) $-2x^2 50x 135$

Q:5 Use 5–points central difference formula to compute f'(2) with h = 0.1, for $f(x) = xe^{-x}$.

- (A) 0.1234
- (B) -0.1525
- (C) -0.1353
- (D) -0.9765
- (E) 0.4563

Q:6 The approximate value of $\int_{0}^{2} e^{x^{2}} dx$ using Simpson's rule is:

- (A) 15.4326
- (B) 30.5432
- (C) 5.5974
- (D) 10.3452
- (E) 22.1571

Q:7 Using RK-2 Heun method to solve the IVP $y' = xe^{3x} - 2y$, $0 \le x \le 1$, y(0) = 0 with h = 0.2, the value of y_2 is equal to:

- (A) 1.2351
- (B) 0.1795
- (C) 0.2879
- (D) 0.4981
- (E) 0.3945

Q:8 The linear system $\begin{array}{c} 4x_1 + x_2 + x_3 = 4 \\ x_1 + 3x_2 + x_3 = 6 \\ 2x_1 + 2x_2 + 5x_3 = 2 \end{array}$

- (A) Has infinitely many solutions
- (B) Has no solution
- (C) Does not converge to a unique solution for some initial guess
- (D) Converges to a unique solution for any initial guess
- (E) Cannot be solved

Q:9 Using Gauss–Seidel iterative method to solve the linear system $\begin{array}{l} 3x_1 - x_2 + x_3 = 1 \\ 3x_1 + 6x_2 + 2x_3 = 0 \\ 3x_1 + 3x_2 + 7x_3 = 4 \end{array}$ with initial guess $\bar{x} = (0, 0, 0)$, the solution after ONE iteration is:

- (A) (1, 0, 4)
- (B) $(\frac{1}{3}, 0, \frac{2}{7})$
- (C) $\left(\frac{1}{3}, -\frac{1}{6}, \frac{1}{2}\right)$
- (D) $\left(\frac{2}{3}, \frac{1}{6}, \frac{3}{2}\right)$
- (E) (3, 6, 7)

Q:10 The secant formula to find roots of $x^2 - R = 0$ can be written as:

(A)
$$x_{i+1} = \frac{2x_i^2 + x_i x_{i-1} - R}{x_i + x_{i-1}}$$

(B) $x_{i+1} = \frac{1}{2} \{ x_i + \frac{R}{x_i} \}$
(C) $x_{i+1} = \frac{x_i x_{i-1}}{x_i + x_{i-1}}$
(D) $x_{i+1} = \frac{x_i x_{i-1} - R}{x_i + x_{i-1}}$
(E) $x_{i+1} = \frac{x_i x_{i-1} + R}{x_i + x_{i-1}}$