King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 280, Final Exam, Term 171

1. [4 points] Find the inverse of the following matrix, if it exists:

$$A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 0 & 3 \\ 1 & 0 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix}.$$

- 2. **[4 points]** Let *A* be an $n \times n$ matrix whose entries consist of 1's and 0's only. Find det(*A*) if each row and each column of *A* contains one 1 only.
- 3. **[8 points]** Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$. a) Show that $W = \{B \in \mathbb{R}^{2 \times 2} : AB = BA\}$ is a subspace of $\mathbb{R}^{2 \times 2}$.
 - b) Find a basis for *W*.
- 4. **[4 points]** Find all real values of *a* for which rank(A) = 2, where

$$A = \begin{bmatrix} 1 & -1 & a/4 \\ 2 & a & -1 \\ 0 & 3 & 8 \end{bmatrix}.$$

5. **[8 points]** Consider the linear transformation $L: \mathbb{P}_3 \to \mathbb{P}_3$ given by

$$L(p(x)) = xp'(x).$$

- a) Find the kernel of L.
- b) Find the range of *L*.
- c) Find a matrix representing L with respect to the basis $E = \{1, x, x^2\}$ for \mathbb{P}_3 .
- 6. [7 points] Let

$$v_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}, v_2 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 3 \end{bmatrix}, v_3 = \begin{bmatrix} 1 \\ 2 \\ 1 \\ -1 \end{bmatrix}.$$

be vectors in the inner product space \mathbb{R}^4 equipped with the standard inner product. Let $S = span\{v_2, v_3\}$.

- a) Find the vector projection of v_1 on S.
- b) Find a basis for S^{\perp} , the orthogonal complement of S.

- 7. **[8 points]** Prove the following statements:
 - a) If Q is an $n \times n$ orthogonal matrix, then Q^2 is an orthogonal matrix.
 - b) Let A be an $n \times n$ matrix such that $A^2 = 2A$. If λ is an eigenvalue of A, then $\lambda = 0$ or $\lambda = 2$.
- 8. **[8 points]** Use Gram-Schmidt orthogonalization process to generate an orthonormal basis for \mathbb{R}^3 starting with the basis

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-2\\0 \end{bmatrix} \right\}.$$

9. [10 points] Let

$$A = \begin{bmatrix} 0 & -2 & 1 \\ 1 & 3 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

- a) Find the eigenvalues of A.
- b) Find the eigenspace corresponding to each eigenvalue of A.
- c) Find a matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- 10.[9 points] Identify the graph of the quadratic equation

$$9x^2 + 8xy + 3y^2 = 20$$

by first making a suitable substitution that removes the xy - term from the quadratic equation.

All the best,

Ibrahim Al-Rasasi