King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 260 - Exam I - Term 171

Duration: 90 minutes

Name:	ID Number:
Section Number:	Serial Number:
Class Time:	Instructor's Name:

Instructions:

- 1. Calculators and Mobile Phones are not allowed.
- 2. Please write legibly.
- 3. Show all your work. No points for answers without justification.
- 4. Make sure that you have 8 pages of problems (Total of 8 Problems)

Question $\#$	Points	Maximum
Number		Points
1		12
2		07
3		12
4		14
5		14
6		13
7		14
8		14
Total		100

1. **[12 points]** (a) Verify, by substitution, that $y(x) = \frac{1}{2x^2 + C}$ is a one parameter family of solutions of the differential equation $\frac{dy}{dx} = -4xy^2$.

(b) Solve the initial value problem
$$\frac{dy}{dx} = -4xy^2$$
; $y(0) = -2$.

(c) Find the interval over which the solution of the initial value problem given in part(b) is defined.

2. **[07 points]** Solve the initial value problem
$$\frac{d^2y}{dx^2} - e^{-x} = 0$$
; $y(0) = 1$; $y'(0) = 4$.

3. **[12 points]** Solve the differential equation $(\sin x)dx + 2y (\cos^3 x)dy = 0$ with $0 < x < \frac{\pi}{2}$. 4. **[14 points]** Find general solution of the first order differential equation $\frac{1}{\sin x} \frac{dy}{dx} = (y \sec x - 2)$ with $0 < x < \frac{\pi}{2}$.

5. **[14 points]** Solve the first order initial value problem

$$\left(\cos x \sin x - xy^2 + \frac{1}{2}\right) + y(1 - x^2)\frac{dy}{dx} = 0; \ y(0) = 1.$$

- 6. **[13 points]** Use Gaussian elimination method to solve the system
 - y 2z + w = 2 2x + y - w = 03x + y + 2z - w = 6

7. **[14 points]** Find a matrix
$$A = \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix}$$
 such that
$$A^{2} + \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$