King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 202 EXAM II 2017-2018 (171)

Thursday, Nov. 23, 2017	Allowed Time: 2 Hours	
Name:		
ID Number:	Serial Number:	
Section Number:	Instructor's Name:	

Instructions:

- 1. Write neatly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.
- 4. Make sure that you have 8 different problems (10 pages).

Problem No.	Points	Maximum Points
1		7
2		12
3		6
4		13
5		15
6		17
7		16
8		14
Total:		100

Q1. (7 points) Use the existence and uniqueness theorem to find the largest interval so that the given initial value problem has a unique solution

 $(x-2)y'' + \ln(x+2)y = x, y(0) = 0, y'(0) = 1.$

- Q2. Let $y_1 = \cos(\ln x)$ and $y_2 = \sin(\ln x)$ be both solutions of the differential equation $x^2 y'' + x y' + y = 0.$
- (a) (7 points) Use the Wronskian to verify that y_1 and y_2 form a fundamental set of solutions of the given differential equation on the interval $(0, \infty)$.

(b) (5 points) Use part (a) to verify that $y = c_1 \cos(\ln x) + c_2 \sin(\ln x) + 1$ is the general solution of the nonhomogeneous differential equation

$$x^2y'' + xy' + y = 1.$$

Q3. (6 points) Given that $y_{p_1} = -2 - 2e^x(x+3)$ and $y_{p_2} = \frac{3}{2} - e^{-x}(x+1)$ are, respectively, particular solutions of the differential equations $y'''-2y = 4 + 2xe^x$ and $y'''-2y = -3 + 3xe^{-x}$, find a particular solution of the differential equation

$$y'''-2y = \frac{1}{2} + x \cosh x.$$

Q4. (13 points) Given that $y_1 = xe^{5x}$ is a solution of $y^{(4)} - 12y^{(3)} + 47y'' - 70y' + 50y = 0$,

find the general solution of the given differential equation.

Q5. (15 points) Solve the differential equation

$$y'' - 2y' - 3y = 4e^x - 9$$

by the method of undetermined coefficients (annihilator approach).

Q6. (17 points) Solve the boundary value problem

$$y'' + y = \cot x, \quad y\left(\frac{\pi}{4}\right) = 0, \quad y\left(\frac{\pi}{2}\right) = 0.$$

Q7. (16 points) Solve the differential equation

$$x^2y'' - xy' - 3y = \ln x$$

on the interval $(0,\infty)$.

Q8. (14 points) The function $y_1 = e^x$ is a solution of the associated homogeneous equation of

$$xy'' - 2y' + (2 - x)y = x^3.$$

Use <u>the method of reduction of order</u> to find the general solution of the given differential equation.