Math 102, Final Exam, Term 171
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3. 1t f()= [ (In1)*dt, then f/(In x) =

(a) 2 (In z)?
(b) (In z)?
(¢) (zInx)
(d) 2?Inx

(e) In(z?)
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/x_l dr =
i
(a) —V1—a22—sintz+C
b) Vi—z2—sintz+C
() —2V1—a2—sinlz+C
(d) 2V1I—a2—sin 'z +C

() —(1—2%) —sintz+C

6. The volume of the solid obtained by rotating the region

enclosed by the curves y = 22 and y = —x about the
y— axis 1s

(a)

(b) 3

(© 7
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7. The area of the region in the first quadrant bounded on the
left by the y-axis, below by the line y = Z, above left by

2
the curve y = 144/, and above right by the curve y = —

NG
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8. A region bounded by the triangle with vertices (0, 1), (1,0),
and (2,0) is revolved about the z-axis. Then the volume of
the resulting solid is
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©

10.

/4 4 9
/0 sec” x tan® zdx =
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11.

12.

1
/0 In(z? + 1) dr =

—2—|—72T—|—1n2

1+2 42
—1+—+1In
4

1+ 4 1n 2
— — +1n
3
—24+74+1In2

—2+1n 2

0
The improper integral / z el dx
—00

converges to — —;

16

1
converges to — 1

diverges

converges to 1

converges to0
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13.  The limit of the n'" term of a sequence, given by

4

1 (mr) 3 +6n2+1 Lt
a, = —sin , 1s equal to
n n3+n2+4 4

~~
®

N~—
w

=
N

b |

14.  The sum of 3 2"71. 97" is

n=2
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o0 1
15.  The number of terms of the series Y ——
n=2 n(ln TL)2
add to ensure that the sum is accurate to within 0.01 is n

bigger than

, we need to

(a) 6100

(c) 100
(d) 10

(e) In10

o (1)
16.  The series ) (3) is
n=1
(a) divergent
(b) convergent

(c) convergent by alternating series test

(d) convergent and its sum is 3

(e) conditionally convergent
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2 1
17 The series }, ——m I

(a) divergent by the limit comparison test

(b) convergent by the limit comparison test

c) convergent and its s is ——
(c) convergent and i um s 7o

(d) divergent by the divergent series test

(e) convergent by the integral test.

1
_1€n |
n—1%~" is

18.  The series »_ (—1)
n=1

(a) convergent by alternating series test
(b) divergent by the integral test

(c¢) divergent by the ratio test

(d) convergent by the root test

(e) divergent by alternating series test
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19. By applying the ratio test to the series

o0 n!

goa(a+1)(a+2).,.(a+n—1)’

a >0,

(a) the test fails

(b) the series convergent, but not absolutely convergent
(c) the series converges

(d) the series diverges

(e) the series converges absolutely

20.  Which of the following statements is TRUE?

2

foo) 1 -n
(a) (1 + —) converges
n=1 n

b) 3 (-1

n—=o nlnn

converges absolutely

00 00
an

(C) If a series Z Qy, converges, then Z — converges absolutely
n=1 - . n=1 T

o0 o0

00
(A) If Z (an +bn) converges absolutely, then both Z Gy, and Z b,, are convergent

n=1 n=1 n=1

converges conditionally
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21.

22.

The radius of convergence R and the interval of convergence

5 (22 —1)" are

o0
I of the power series )
n=0

o neby 1ofb
o neb 1=
o neb 1= ()
o nedyre[b

~~
o
N—
A~ o
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7.‘.271

> (-1 -

23. _
4 (2n + 1)!

24.  Let f(z) = x cos (2?). Then f17(0) =

17!
(a) ]l
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25.

26.

The arc length along the curve y = 2> — = In  from (1,1)

to (6,62—8
(a) 62—;
(b) e—;
(c) e —1
(d) 62—;
(e) e*—7

The area of the surface obtained by rotating the curve

Page 13 of 14

y =+/x, 2 <z <3 about the z-axis is

S

(b) g (13v/13 — 3v/3)
() & (VIB-2)

(d) = (v/13 - 3V3)

6

(6) = (v/13 - 9V3)

6

(1313 — 27)
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27.  The series Z i
a1 €’

(a) converges by the integral test

(b) converges by the alternating series test
(c) diverges by the divergence test

(d) diverges by the ratio test

(e) converges as a p — series

28.  The series Z > is convergent if

(a) p>;
(b) pzi
() p<;
(d) p=i
(e) p<jL



