King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 101
Final Exam
Term 171
Thursday 04/01/201
Net Time Allowed: 180 minutes

MASTER VERSION

Q	MM	V1	V2	V3	V4
1	a	a	c*	d	d
2	a	a	е	b	С
3	a	b	e	a	a
4	a	a	e	b	ď
5	a	С	С	b	a
6	a	е	a	d	a
7	કો.	d	\mathbf{a}	d	е
8	a	а	e	a	b
9	a	е	е	С	b
10	a	e	a	b	c
11	a	С	e	ь	е
12	a	b	d	b	a
13	a	С	b	a	b
14	а	a	b	b	е
15	a	a	е	е	d
16	a	b	b	С	e
17	a	е	С	С	a
18	a	е	е	С	е
19	a	a	d	·b	a
20	а	a	e	d	С
21	а	d	е	e	С
22	a	b	d	e	С
23	a	a	a	a	a
24	a	d	е	b	b
25	a	а	b	a	b
26	al	c	c	c	b
27	a	a	a	е	d
28	a	e	c	е	b

- 1. $\lim_{x \to 1^{-}} \frac{1 x^2}{|x^2 + 3x 4|} =$
 - (a) $\frac{2}{5}$
 - (b) $-\frac{2}{5}$
 - (c) $\frac{3}{5}$
 - (d) $-\frac{3}{5}$
 - (e) Does not exist

- 2. If $f(x) = \cosh(\ln x)$, then $f'\left(\frac{1}{5}\right) =$
 - (a) -12
 - (b) -10
 - (c) 24
 - (d) -26
 - (e) -1

- 3. $\lim_{x \to 1^{-}} (2 x)^{\tan(\frac{\pi x}{2})} =$
 - (a) $e^{\frac{2}{\pi}}$
 - (b) e^{π}
 - (c) 0
 - (d) $e^{\frac{1}{\pi}}$
 - (e) 1

- 4. The critical numbers of the function $f(x) = (1+x+x^2)e^{-x}$ are:
 - (a) 0 and 1
 - (b) 0 only
 - (c) 1 only
 - (d) 0 and -1
 - (e) 1 and -1

- 5. The function f is such that f(1) = 5 and $f'(x) \le 2$ for all values of x. The value of f(3) could be equal to:
 - (a) 9
 - (b) 10
 - (c) 12
 - (d) 13
 - (e) 11

- 6. If $f(x) = \frac{2x^3 3x^2 + 5}{x^2 + x}$, an equation of the oblique (slant) asymptote for the graph of f is:
 - (a) y = 2x 5
 - (b) y = 2x 3
 - (c) y = x + 3
 - (d) y = 3x + 1
 - (e) y = 3x 2

- 7. The linear approximation of $f(x) = \ln(e + \tan x)$ at a = 0 is given by
 - (a) $L(x) = 1 + \frac{x}{e}$
 - (b) L(x) = 1 + ex
 - (c) $L(x) = e + \tan x$
 - (d) L(x) = 1 x
 - (e) $L(x) = e \frac{x}{e}$

- 8. If the graph of $f(x) = \frac{2}{9}x^3 + Ax^2 \frac{4}{3}x + B + 1$ has a local minimum at the point (1,1), then 3A + 9B =:
 - (a) 8
 - (b) 0
 - (c) 2
 - (d) -9
 - (e) -1

- 9. $\lim_{x \to 0^+} \left(\frac{1}{\ln(x+1)} \frac{1}{x} \right) =$
 - (a) $\frac{1}{2}$
 - (b) $-\frac{1}{3}$
 - (c) 4
 - (d) 0
 - (e) ∞

- 10. The sum of the absolute maximum and the absolute minimum values of the function $f(x) = 2\sin(x) + \cos(2x)$ on the interval $\left[0; \frac{\pi}{2}\right]$ is:
 - (a) $\frac{5}{2}$
 - (b) $\frac{3}{2}$
 - (c) 2
 - (d) 1
 - (e) 0

- 11. The slope of the normal line to the curve described by $\frac{2x+y^4}{y} = 5 \ln y + 3x^2 \text{ at the point } (1,1) \text{ is:}$
 - (a) 1
 - (b) -1
 - (c) 2
 - (d) -2
 - (e) 0

- 12. The equation f(x) + f''(x) = 1 is valid for all values of x. If F(x) is an antiderivative of f(x) such that F(0) = -1 and F(1) = 2, and f'(0) = 2, then f'(1) is equal to:
 - (a) 0
 - (b) -1
 - (c) 1
 - (d) 2
 - (e) -2

13.
$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2} =$$

- (a) $\frac{1}{2}$
- (b) $-\frac{1}{2}$
- (c) 0
- (d) 1
- (e) Does not exist

14. If
$$f(x) = \frac{\sqrt{x+1}}{x}$$
, then $f'(x) = \frac{x}{x}$

- (a) $-\frac{x+2}{2x^2\sqrt{x+1}}$
- (b) $\frac{3x+1}{x^2\sqrt{x+1}}$
- (c) $\frac{1-\sqrt{x+1}}{x^2}$
- $(d) \quad \frac{1-x}{x^2\sqrt{x+1}}$
- (e) $\frac{2x}{2x^2\sqrt{x+1}}$

15.
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 3}}{\sqrt{4 + 2x^2}} =$$

- (a) $\frac{1}{\sqrt{2}}$
- (b) $-\frac{1}{\sqrt{2}}$
- (c) $\frac{1}{2}$
- (d) $-\frac{1}{2}$
- (e) 1

16. The function $f(x) = x^3 - x^2 - x$ is

- (a) decreasing on $\left(-\frac{1}{3},1\right)$
- (b) decreasing on $\left(-\infty, -\frac{1}{3}\right)$
- (c) decreasing on $(1, \infty)$
- (d) decreasing on $(-\infty, \infty)$
- (e) increasing on $(-\infty, \infty)$

17. The function $f(x) = e^x - x^2$ is

- (a) concave-down on $(-\infty, 0]$
- (b) concave-up on $(-\infty, 0]$
- (c) concave-down on $[0, \infty)$
- (d) concave-up on $[0, \infty)$
- (e) concave-down on $(-\infty, \infty)$

18. If $f(x) = \begin{cases} x^2 & \text{if } x \leq 2\\ mx + b & \text{if } x > 2 \end{cases}$ is differentiable everywhere, then m - b = 1

- (a) 8
- (b) 4
- (c) 6
- (d) 0
- (e) -6

19. The function $f(x) = (2x - 7)\sqrt{x^2 - 1}$ has a:

- (a) local minimum at x = 2.
- (b) local minimum at x=2 and a local maximum at $x=-\frac{1}{4}$.
- (c) local maximum at x = 2.
- (d) local maximum at x=2 and a local minimum at $x=-\frac{1}{4}$.
- (e) local maximum at x = 2 and a local minimum at x = 1.

20. If $x^2 + xy + y^3 = 1$, the value of y'' at the point where x = 1 is equal to

- (a) 2
- (b) 1
- (c) 0
- (d) 3
- (e) 4

- 21. If 4x + 3y = 7 is the tangent line to the graph of $x^2y + ay^2 = b$ at the point (1,1), then a + b =
 - (a) $\frac{3}{2}$
 - (b) $\frac{2}{3}$
 - (c) $\frac{5}{2}$
 - (d) $\frac{2}{5}$
 - (e) 0

- 22. The area of an equivalent triangle is expanding with time. When the side is 4 inches long, the area increases at a rate of $\sqrt{3} \ in^2/sec$. The side's length at that moment is increasing at the rate:
 - (a) $\frac{1}{2} in/sec$
 - (b) 1 *in/sec*
 - (c) $\sqrt{3} in/sec$
 - (d) $\frac{1}{\sqrt{3}} in/sec$
 - (e) $\frac{1}{4}$ in/sec

23. If $f(x) = (2x+1)(3x+2)^2(4x+3)^3(5x+4)^4$, then f'(-1) =

- (a) -40
- (b) -28
- (c) 38
- (d) 1
- (e) 0

24. Using Newton's Method to estimate the value of $\sqrt[3]{7}$, starting with $x_0 = 1$, $x_1 =$

- (a) 3
- (b) 2
- (c) $\frac{3}{2}$
- (d) $\frac{2}{3}$
- (e) $\frac{7}{3}$

25. If
$$f(x) = \begin{cases} [|x|] + 3, & -2 \le x < -1 \\ \frac{A}{2+x} + x^2, & -1 \le x < 2 \end{cases}$$

is continuous at x = -1, then the value of A is:

([|x|]]: greatest integer of x)

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4

26. The antiderivative F(x) of the function $f(x) = \frac{3+10x^2}{10\sqrt{x}} + e^x \text{ such that } F(1) = e \text{ is:}$

(a)
$$\frac{3}{5}\sqrt{x} + \frac{2}{5}\sqrt{x^5} + e^x - 1$$

(b)
$$\frac{3}{5}\sqrt{x} + \frac{2}{5}\sqrt{x^3} + e^x - 1$$

(c)
$$\frac{2}{5}\sqrt{x} + \frac{3}{5}\sqrt{x^5} + e^x - 1$$

(d)
$$\frac{1}{5}\sqrt{x} + \frac{4}{5}\sqrt{x^5} + e^x - 1$$

(e)
$$\frac{3}{5}\sqrt{x^5} + \frac{2}{5}\sqrt{x^3} + e^x - 1$$

- 27. The area (in units²) of the largest rectangle that could be inscribed in a semicircle of radius 1 is
 - (a) 1
 - (b) 2
 - (c) $\sqrt{2}$
 - (d) $\frac{1}{2}$
 - (e) $2\sqrt{2}$

- 28. A particle is moving along a quarter circle of equation $x^2+y^2=4; \ x\geq 0; y\geq 0$. How fast is the particle's y-coordinate changing at the point $(1,\sqrt{3})$ if its x-coordinate is increasing at the rate of 2 unit/sec.
 - (a) $-\frac{2}{\sqrt{3}}$ unit/sec
 - (b) $-2\sqrt{3}$ unit/sec
 - (c) $\frac{2}{\sqrt{3}}$ unit/sec
 - (d) $2\sqrt{3}$ unit/sec
 - (e) $2 + \sqrt{3}$ unit/sec