Serial:

King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics STAT-319-Term163--16 /8/ 2017 Ouiz, #5

Name:

Q 1. In reference to the data below, the independent variable x is SO2 deposition rate (mg/m2/day) and the dependent variable y is steel weight loss (g/m2).

ID:

Х	14	18	40	43	45	112
Y	280	350	470	500	560	1200

with summary statistics: $\sum x = 272$, $\sum y = 3360$, $\sum x^2 = 18538$, $\sum y^2 = 2425400$, $\sum xy = 210120$

- a) Find the equation of the estimated regression line between deposition rate and steel weight loss.
- b) What is the expected change in the steel weight loss if the deposition rate is increased by 2 mg/m2/day?
- c) Test, at 5% level of significance, the hypothesis that the higher the deposition rate, the more is the steel weight loss.
- d) Compute the correlation coefficient and explains what it means.
- e) Estimate, with 95% confidence, the expected steel weight loss if the deposition rate is 50.

Q 2. The pull strength of a wire bond is an important characteristic. A computer output of fitting a multiple linear regression model on the pull strength (y), die height (x_1), post height (x_2), loop height (x_3), wire length (x_4), bond width on the die (x_5), and bond width on the post (x_6).

Predictor	Coef	SE	E Coef	т	Р			
Constant	3.137	8	3.110	8.110	0.706			
x_1	<i>x</i> ₁ 0.6444		.5889	1.09	0.295			
x_2	-0.0104	0	.2667	-0.04	0.970			
x_3	0.5046	0	.1423	3.55	0.004			
x_4	-0.1197	0	.0562	-2.13	0.055			
<i>x</i> ₅	-2.462	2	2.598	-0.95	0.362			
<i>x</i> ₆	1.504	1	1.519	0.99	0.342			
S = R^2 = Analysis of Variance								
Source Regressi Residual	on	DF	SS 	MS	F 			
Total		18	33.2211					

a) Fill in the blanks in the above output.

- b) Write the fitted regression equation.
- c) Write the hypothesis of the significance of the regression model, and test it. Use $\alpha = 0.05$.
- d) Which one of the regression coefficients is significant, and why? Use $\alpha = 0.1$.
- e) What is the amount of variation that explained by the model?
- f) What is the amount of variation that explained by the model taking into account number of independent variables in the model and the sample size?

Q 3. Consider the following partial output from a multiple regression problem, (7 - 51 - 22)

$$(X'X) = \begin{pmatrix} 7 & 51 & 32 \\ 51 & 471 & 235 \\ 32 & 235 & 163.84 \end{pmatrix}, SS_E = 27.58, \text{ and}$$
$$(X'X)^{-1} = \begin{pmatrix} 1.7996 & -0.06854 & -0.25316 \\ -0.06854 & 0.01008 & -0.00107 \\ -0.25316 & -0.00107 & 0.05708 \end{pmatrix}$$

Use the above to answer the following three problems

- a) The number of independent (regressor) variables equals to:
- b) Find the estimate of the variance of the error is
- c) Test $\beta_1 = 0$, if the estimated value is 1.4974.