King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics SYLLABUS Summer Term: 2016-2017(163) Coordinator: Prof. Bilal Chanane

Course #: MATH 301

Title: Methods of Applied Mathematics

Textbook: Advanced Engineering Mathematics by Zill and Wright (Fifth Edition)

Course Description: Special functions. Bessel's functions and Legendre polynomials. Vector analysis including vector fields, divergence, curl, line and surface integrals, Green's, Gauss' and Stokes' theorems. Sturm-Liouville theory. Laplace transforms. Fourier series and transforms. Introduction to partial differential equations and boundary value problems in rectangular, cylindrical and spherical coordinates. **Prerequisite:** MATH 202 or MATH 260

Week	Date	Sections	Topics	Suggested Homework
				Problems
1	July 9-13	9.1	Vector Functions	1,12,16,17,21,26,33, 41
		9.5	The Directional Derivative	2,7,9,14,17,21,23,32,29
		9.7	Curl and Divergence	2,6,10,14,1722,27
		9.8	Line Integral	2,6,8,11,16,19,24,28,33
		9.9	Independence of the Path	1,10,15,18,21,26
2	July 15*-20	9.12	Green's Theorem	2,4,6,9,18,23,25
		9.13	Surface Integrals	2,5,10,13,18,22,25,33
		9.14	Stokes' Theorem	1,3,6,8,13,17
		9.16	Divergence Theorem	2,4,7,11,14
		E	XAM I: Tuesday, Jul. 25th (19:00 – 21:00) 9.1-	9.16
3	July 23-27	4.1	Definition of the Laplace transform	1,5,14,26,30,37,43
		4.2	Inverse Transform, Transforms of Derivatives	2,10,19,22,24,32,35
		4.3	Translation Theorems	2,8,13,20,24,31,37,48,55,63
		4.4	Additional Operational Properties	1,10,16,22,27,31,38,46
		4.5	The Dirac Delta Function	1,4,8,12
	•	EXA	M II: Wednesday, Aug. 9th (19:00 – 21:00) 4.	1-12.5
4	July 30-	12.1	Orthogonal Functions	2,6,11,13
	August 3	12.5	Sturm-Liouville Theorem	2,4,6,12
	Ū	12.2	Fourier Series	1,6,12,17,20
		12,3	Fourier Cosine and Sine Series	1,8,12,16,25,35,38
		12.6	Bessel and Legendre Series	2,4,6,8,15,20
5	August 6-10	13.1	Separable Partial Differential Equations	2,8,12,16,22,26,27
		13.3	Heat Equation	2,3,6
		13.4	Wave Equation	1,6,9,16,23
		13.5	Lap lace's Equation	2,4,7,10,14
		14.2	Problems in Cylindrical Coordinates	2,4,9,12
6	August 13-17	14.3	Problems in Spherical Coordinates	2,5,11,12
		15.2	Applications of the Laplace Transform	2,4, 10,14,18,24
		15.3	Fourier Integral	1,4,10
		15.4	Fourier Transforms	1,6,10,12,16
7	August 20		Catch up and Review	

*Normal Monday class

Grading Policy:

Exam I	25 % (100 pts)	Tuesday, Jul. 25th (19:00 – 21:00) 9.1-9.16
Exam II	<u>25 % (100 pts)</u>	Wednesday, Aug. 9th (19:00 – 21:00) 4.1-12.5
Final Exam	<u>35 % (140 pts)</u>	<u>Tuesday, Aug. 22nd (12:30-15:30) Comprehensive</u>

Attendance:

- Attendance is compulsory. KFUPM policy with respect to attendance will be strictly enforced.

- Any student accumulating 6 unexcused absences will be awarded DN Grade in the course.

- class duration for this term (163) IS 70 minutes and not 50 minutes like the other terms !

Learning Outcomes:

Upon completion of this course, students will be able to

- 1. Recognize the vector fields, find their curl and divergence, and test whether they are conservative.
- 2. Evaluate the line integral along plane or space curves and the surface integral over surfaces in 3-space.
- 3. Use Green's, Stokes' and Divergence theorems to relate and evaluate different types of integral.
- 4. Evaluate the Laplace transform and inverse Laplace transform of a given function.
- 5. Apply the Laplace transform, inverse Laplace transform, and their operational properties to solve linear initial-value and boundary-value problems.
- 6. Find the Fourier series, the Fourier cosine and sine series, and the Bessel and Legendre series of a given function.
- 7. Find the eigenvalues and eigenfunctions for a given Sturm-Liouville boundary-value problem and state their orthogonality relation.
- 8. Solve separable partial differential equations.
- 9. Solve boundary-value problems involving the wave, heat and Laplace equations in various coordinate systems.
- 10. Evaluate the Fourier integral and the Fourier cosine and sine integrals of a given function.
- 11. Use the Fourier transform, inverse Fourier transform, and their operational properties to solve linear boundary value problems

Instructor: Prof. Bilal Chanane Office: 5-431 Office Phone: 2741 Contact Number: 0533678084 E-mail: <u>bilal.chanane@gmail.com</u>, <u>chanane@kfupm.edu.sa</u>

Office Hours: Monday & Wednesday: 12:30-13:30 Sunday, Tuesday & Thursday: 8:45-9:30 ... and by appointment.