- 1. On [2,4], $\lim_{n\to\infty} \frac{2}{n} \sum_{i=1}^{n} \frac{1}{2 + \frac{2i}{n}} =$
 - (a) ln 2
 - (b) $\frac{\ln 2}{2}$
 - (c) $\frac{1}{4}$
 - (d) $\frac{1}{6}$
 - (e) $\frac{1}{2\ln 2}$

- 2. Let $\int_1^{x^2} \frac{2f(\sqrt{t})}{t^2} dt = x^2 1$. If x > 0, then f'(2) =
 - (a) 20
 - (b) 16
 - (c) 22
 - (d) 18
 - (e) 24

- 3. $\int_0^1 (1+x)\sqrt{1-x} \, dx =$
 - (a) $\frac{4}{3}$
 - (b) $\frac{3}{5}$
 - (c) $\frac{14}{15}$
 - (d) 1
 - (e) $\frac{8}{15}$

- 4. The area of the region enclosed by the curve $y^2 = -x$ and the line x+y+2=0 is equal to
 - (a) 2
 - (b) 3
 - (c) $\frac{10}{2}$
 - (d) $\frac{9}{2}$
 - (e) $\frac{3}{2}$

5. The volume of the solid generated by rotating the region bounded by the curves $y=x^2$ and $x=y^2$ about the line x=2 is given by

(a)
$$\pi \int_0^2 (x - x^4) dx$$

(b)
$$\pi \int_0^1 (y^2 - y^4) dy$$

(c)
$$\pi \int_0^1 (2-x)(\sqrt{x}-x^2) dx$$

(d)
$$\pi \int_0^1 (\sqrt{y} + y + y^2 + y^4) dy$$

(e)
$$\pi \int_0^1 (2\sqrt{y} - y - 2y^2 + y^4) dy$$

6. Let f be an **odd** and continuous function. If $\int_0^4 f(x) dx = 6$, then $\int_0^2 f(-2x) dx =$

(a)
$$-3$$

(b)
$$-6$$

(c)
$$-12$$

7. The position function of a particle moving in a straight line is given by

$$s(t) = \frac{t^3}{3} - \frac{t^2}{2}, \ t \ge 0$$

The **total distance** traveled by the particle over the time interval $0 \le t \le 2$ is

- (a) 3
- (b) 1
- (c) $\frac{1}{3}$
- (d) $\frac{5}{3}$
- (e) 5

8.
$$\int_0^{1/2} \frac{e^{\sin^{-1}x}}{\sqrt{1-x^2}} \, dx =$$

- (a) $e^{\pi/4} 1$
- (b) $e^{\pi/3} + 1$
- (c) $e^{\pi/6} 1$
- (d) $e^{\pi/4} + 1$
- (e) 2e 1

9. The volume of the solid generated by revolving the region bounded by the curves of $y = x^2 + 1$ and y = x + 3 about the x-axis is given by

(a)
$$\pi \int_{-1}^{1} (8 + 6x + 3x^2 - x^4) dx$$

(b)
$$\pi \int_{-1}^{2} (8 - 6x + x^2 - x^4) dx$$

(c)
$$\pi \int_{-1}^{1} (8 - 6x - 3x^2 - x^4) dx$$

(d)
$$\pi \int_{-1}^{2} (8 + 6x - x^2 - x^4) dx$$

(e)
$$\pi \int_0^2 (8 + 6x - 2x^2 + x^4) dx$$

- 10. The base of a solid is bounded by the curves $y = x^2, y = 0$ and x = 1. If the cross-sections perpendicular to the x-axis are semi-circles, then the volume of the solid is
 - (a) $\frac{\pi}{6}$
 - (b) $\frac{1}{5}$
 - (c) $\frac{1}{10}$
 - (d) $\frac{\pi}{5}$
 - (e) $\frac{\pi}{40}$