1. Using three approximating rectangles and the midpoints rule, an estimate of the area under the graph of $y = x^2 + 3$ from x = 1 to x = 7 equal to

- (a) 130
- (b) 100
- (c) 109
- (d) 170
- (e) 67

2.
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \left[\frac{1 + \frac{2i}{n}}{\left(1 + \frac{2i}{n}\right)^{2} + 4} \right] =$$

- (a) $\ln \sqrt{\frac{13}{5}}$
- (b) $\ln\sqrt{\frac{19}{7}}$
- (c) $\ln\sqrt{\frac{11}{3}}$
- (d) $\ln \sqrt{\frac{21}{4}}$
- (e) $\ln\sqrt{\frac{15}{7}}$

- 3. Evaluate $\int_{-3}^{3} (|x| \sqrt{9 x^2}) dx$
 - (a) $9 \frac{9\pi}{2}$
 - (b) $7 \frac{7\pi}{2}$
 - (c) $9 \frac{7\pi}{2}$
 - (d) $7 \frac{9\pi}{2}$
 - (e) $5 \frac{3\pi}{2}$

- 4. If $F(x) = \int_2^x f(t) dt$, where f is the function whose graph is given, which of the following values is largest?
 - (a) F(2)
 - (b) F(1)
 - (c) F(0)
 - (d) F(3)
 - (e) F(4)

- 5. Let $f(x) = \int_x^3 \sin(t^2) dt$; then $f'\left(\frac{\sqrt{\pi}}{2}\right) =$
 - (a) $\frac{-\sqrt{2}}{2}$
 - (b) $\frac{\sqrt{2}}{2}$
 - (c) $\frac{-\sqrt{3}}{2}$
 - (d) $\frac{1}{2}$
 - (e) 1

- 6. $\lim_{n \to \infty} \frac{2}{n^4} \left(1 + 8 + 27 + \ldots + n^3 \right)$
 - (a) $\frac{1}{2}$
 - (b) $\frac{1}{3}$
 - (c) $\frac{1}{9}$
 - (d) $\frac{1}{7}$
 - (e) $\frac{1}{5}$

- 7. Let $v(t)=t^2-t-2$, be the velocity function (in meter per second) for a particle moving along a line. The total distance travelled by the particle during the period $0 \le t \le 3$
 - (a) $\frac{31}{6}$
 - (b) $\frac{15}{7}$
 - (c) $\frac{35}{9}$
 - (d) $\frac{41}{5}$
 - (e) $\frac{43}{6}$

- 8. $\int_0^{1/2} \frac{(1+t^2)\sqrt{1-t^2}}{1-t^4} dt =$
 - (a) $\frac{\pi}{6}$
 - (b) $\frac{1}{2}$
 - (c) $\frac{2}{3}$
 - (d) $\frac{\pi}{4}$
 - (e) $\frac{\pi}{2}$

- 9. The value of $I = \int_{-9}^{-1} (x+5)^8 \left(\sin(x+5) + (x+5)^{-6} \right) dx =$
 - (a) $\frac{128}{3}$
 - (b) $\frac{1}{3}$
 - (c) $\frac{94}{3}$
 - (d) $\frac{146}{3}$
 - (e) 0

- 10. If f is an **even** and integrable function such that $\int_{-3}^{0} f(x) dx = 5, \text{ and } \int_{3}^{10} f(x) dx = 7. \text{ Then } \int_{-3}^{10} f(x) dx =$
 - (a) 17
 - (b) 10
 - (c) 24
 - (d) 15
 - (e) 19

11. $\int_0^{\pi/2} (\cos x) \sin (\sin x) \, dx =$

- (a) $1 \cos 1$
- (b) $\sin 1 + 1$
- (c) $\cos 1 \sin 1$
- (d) 1
- $(e) \quad 0$

12. $\int_0^1 (x-1)^2 e^{(x-1)^3} dx =$

- (a) $\frac{1}{3}\left(1-\frac{1}{e}\right)$
- (b) $\frac{1}{15} + e$
- (c) $\frac{1}{3e} 1$
- (d) $\frac{1}{3} + e$
- (e) $\frac{e^2}{6} 1$

13.
$$\int_0^{\pi/3} \frac{\sin \theta + \sin \theta \tan^2 \theta}{\sec^2 \theta} d\theta$$

- (a) $\frac{1}{2}$
- (b) $\frac{5}{12}$
- (c) 2
- (d) 1
- (e) 0

14. If
$$\int \sin^3 x \, dx = g(x) + \frac{1}{3} \cos^3 x + C$$
, where C is a constant, then $g(x) =$

- (a) $-\cos x$
- (b) $\sin x$
- (c) $\sec x 3 \csc x$
- (d) $\tan x$
- (e) $-\cot x$

15.
$$\int \sqrt[4]{x^4 + 1} \, x^7 \, dx$$

(a)
$$\frac{1}{9}(x^4+1)^{9/4} - \frac{1}{5}(x^4+1)^{5/4} + C$$

(b)
$$\frac{5}{9}(x^4+1)^{9/4} + \frac{4}{5}(x^4+1)^{5/4} + C$$

(c)
$$\frac{1}{5}(x^4+1)^{9/4} - \frac{1}{9}(x^4+1)^{5/4} + C$$

(d)
$$\frac{9}{4}(x^4+1)^{9/4} + \frac{4}{5}(x^4+1)^{5/4} + C$$

(e)
$$(x^4+1)^{9/4} - (x^4+1)^{5/4} + C$$

16. The area of the region enclosed by the curves $y = \sin x$ and $y = \cos 2x$ from x = 0 to $x = \frac{\pi}{2}$ equals to

(a)
$$\frac{3\sqrt{3}}{2} - 1$$

(b)
$$\sqrt{3} + 1$$

(c)
$$\sqrt{5} + 7$$

(d)
$$\frac{2\sqrt{5}}{3} - 1$$

(e)
$$2\sqrt{5} + 3\sqrt{3}$$

- 17. Which one of the following integral represent the area of the shaded region given below?
 - (a) $\int_0^3 2y(3-y) \, dy$
 - (b) $\int_{-3}^{3} (\sqrt{x} \sqrt{x+1}) dx$
 - (c) $\int_{-3}^{3} 2y(y-4) \, dy$
 - (d) $\int_{-3}^{3} y(3-y) \, dy$
 - (e) $\int_0^3 (1+2y+y^2) \, dy$

- 18. If the base of a solid S is the enclosed area between y=1-x, the y-axis and the x-axis where the cross-sections perpendicular to the x-axis are squares, then the volume of the described solid S equals to
 - (a) $\frac{1}{3}$
 - (b) $\frac{1}{4}$
 - (c) $\frac{1}{2}$
 - (d) $\frac{1}{6}$
 - (e) $\frac{1}{5}$

- 19. The volume of the solid obtained by rotating the region enclosed by $x = y^2$ and x = y about the line y = -1 is:
 - (a) $\frac{\pi}{2}$
 - (b) $\frac{3\pi}{5}$
 - (c) $\frac{96 \pi}{5}$
 - (d) $\frac{\pi}{3} (1 e)$
 - (e) $\frac{\pi}{9}$

- 20. The volume of the solid obtained by rotating the region bounded by $y = \ln x$, y = 1, y = 2 and x = 0 about the y-axis
 - (a) $\frac{\pi}{2}(e^4 e^2)$
 - (b) $\frac{3\pi}{2}(e-1)$
 - (c) $\frac{\pi}{4}(e^2-3)$
 - (d) $\frac{\pi}{4}(e^4 e^3)$
 - (e) $\frac{\pi}{2}(e^4 e)$