King Fahd University of Petroleum and Minerals

Department of Mathematics & Statistics Math 101 – Syllabus 2016/2017 (163)

Coordinator: Jawad Abuihlail (Room: 5-507; Tel: 4737)

Title: Calculus I
Credit: 4-0-4

Textbook: Calculus (Early Transcendental) by J. Stewart, **8**th **edition**, Brooks/Cole, 2015.

Description: To introduce the student to the basic concepts and methods of Calculus, topics include:

* Limits, continuity and differentiability of functions of a single variable (exponential,

logarithmic, trigonometric and inverse trigonometric functions.)

* Applications: related rates, local linear approximation, differentials, hyperbolic functions,

curve sketching and applied optimization problems.

Learning Outcomes:

Upon successful completion of this course, a student should be able to:

- 1. Compute various types of limits of functions.
- 2. Apply the precise definition of a limit to some simple functions.
- 3. Determine the region of continuity and types of discontinuity of a function.
- 4. Apply the Intermediate Value Theorem to locate zeros of functions.
- 5. Compute the slope of a curve at a point and the rate at which a function changes.
- 6. Calculate derivatives of different types of functions (exponential, logarithmic, trigonometric and inverse trigonometric functions) by using rule of derivation.
- 7. Use differentials to estimate errors.
- 8. Differentiate the hyperbolic functions.
- 9. Find extreme values of functions.
- 10. Sketch and analyze the graphs of various types of functions
- 11. Apply Newton's method to approximate zeros of functions.
- 12. Solve single variable optimization problems using derivatives.
- 13. Recover some basic functions from their derivatives.

Grading Policy: (Notice that the letter grade D begins with 200/400, i.e. 50%)

Exam I A common MCQ exam	Material: 2.1 – 2.8	Place: TBA	25% (100 points)	
	Date: Monday, Jul. 24th, 2017	(100 points)		
Exam II	Material: 3.1 – 3.9	Place: TBA	25%	
A common MCQ exam	Date: Tuesday, Aug. 8th, 2017	Time: 19:00 – 21:00	(100 points)	
Final Exam A comprehensive common MCQ exam	Material: Comprehensive	Place: TBA	35%	
	Date: Tuesday August 22 nd , 2017	Time: 19:00 – 22:00	(140 points)	
Class Work	i) Online Homework: The web ackfupm.mylabsplus.com	5% (20 points)		
	ii) Class Activities: It is based on quactivities determined by the insticlass activity should be of write choice type. The average x (out the sections taught by the same interval [28, 30].	10% (40 points)		
Passing Grade	A student must score at least 50% (20 course.			

Exam Questions:

The questions of the common exams are based on the examples, homework problems, recitation problems and the exercises of the textbook.

Missing Exam I or Exam II:

No makeup exam will be given under any circumstance. When a student misses Exam I or Exam II for a legitimate reason (such as medical emergencies), his grade for this exam will be determined based on the existing formula which depends on his performance in the non-missing exam and in the final exam.

Attendance:

Attendance is a University Requirement (see p. 38 of the Undergraduate Bulletin 2006-2009). A DN grade will be awarded to any student who accumulates a total of 9 unexcused absences in both Lecture & Recitation.

Academic Integrity: All KFUPM policies regarding ethics apply to this course

Week	Dates (2017)	Sec.	Topics (25 sections)			
1	July 9-13	2.1	The Tangent Problem (Example 1).			
		2.2	The Limit of a Function.			
		2.3	Calculating Limits Using the Limit Laws			
		2.4	The Precise Definition of a Limit (Examples 1, 2 and 3)			
	July 15 -20	2.5	Continuity			
2		2.6	Limits at Infinity; Horizontal Asymptotes			
		2.7	Derivative and Rates of Change			
		2.8	The Derivative as a Function + Exercise # 56			
Exam I: Material 2.1- 2.8; Monday, Jul. 24 th , 2017						
	July 23-27	3.1	Derivatives of Polynomials and Exponential Functions			
		3.2	The Product and Quotient Rules			
3		3.3	Derivatives of Trigonometric Functions			
		3.4	The Chain Rule			
		3.5	Implicit Differentiation + Exercise # 77			
	July 30- August 3	3.6	Derivatives of Logarithmic Functions			
4		3.7	Rates of Change (Example 1)			
4		3.9	Related Rates			
		3.10	Linear Approximations and Differential			
		3.11	Hyperbolic Function (Example 1 and 2)			
Exam II: Material 3.1- 3.9; Tuesday, August 8th, 2017						
	August 6-10	4.1	Maximum and Minimum Values			
_		4.2	The Mean Value Theorem			
5		4.3	How Derivatives Affect the Shape of a Graph			
		4.4	Indeterminate Forms and L'Hospital's Rule			
6	August 13-17	4.5	Summary of Curve Sketching			
		4.7	Optimization Problems			
		4.8	Newton's Method			
		4.9	Antiderivatives			
7	August 20	Catch Up & Revision				
Final Exam (Comprehensive): Tuesday August 22 nd , 2017; 19:00 – 22:00						

Recitation problems & some suggested problems

Section	Recitation Problems	Suggested Problems	CAS
2.2	6, 12, 18, 36, 40, 44	9, 11 17, 35, 37, 39, 41	
2.3	12, 18, 22, 24, 26, 32, 51, 54	1, 9, 11, 17, 21, 25, 29, 53	
2.4	2, 14, 18, 22	3, 5, 13, 17, 21	
2.5	6, 12, 16, 20, 24, 34, 36, 40, 42, 46	3, 7, 13, 15, 17, 19, 21, 23, 29, 31, 35, 43, 45, 47, 49	34
2.6	6, 10, 14, 18, 24, 28, 36, 42, 50	3, 7, 13, 15, 17, 19, 25, 35, 39, 41, 49	45
2.7	6, 10, 14, 22, 28, 36, 38	7, 9, 13, 21, 23, 25, 29, 35, 39	
2.8	2, 4, 8, 24, 28, 50, 62	1, 3, 9, 25, 29, 41, 49, 61	55
	, , , , ,		
3.1	10, 24, 38, 50, 56, 70, 72	9, 23, 35, 37, 49, 55, 59, 61, 69, 71, 73, 75, 81	47, 60
3.1	10, 24, 36, 30, 30, 70, 72	7, 23, 33, 37, 47, 33, 37, 01, 07, 71, 73, 73, 61	47,00
3.2	6,10, 20, 30, 32, 42, 46, 48, 52(d)	5, 9, 11, 23, 29, 31, 41,43, 49, 51, 53	38
3.3	6, 12, 22, 44, 52	3, 11, 23, 43, 49, 51	
3.4	18, 26, 42, 50, 54, 62, 78	19, 25, 39, 53, 59, 61, 77	
3.5	6, 14, 20, 22, 30, 58, 74(a), 78	7, 11, 15, 17, 21, 29, 57, 75, 77	
3.6	12, 16, 18, 32, 34, 42, 48, 54	3, 9, 19, 31, 33, 41, 49, 53	
3.7	2, 8	1, 3, 5, 9	
3.9	4, 6, 12, 48	3, 7, 13, 19, 31	
2.10	6 16 24 29 24	5 17 25 27 25	-
3.10	6, 16, 24, 28, 34	5, 17, 25, 27, 35	5
3.11	10, 20, 30, 46	7, 9, 21, 31, 57	
4.1	10, 12, 28, 30, 34, 36, 42, 54	3, 5, 9, 11, 27, 33, 35, 39,55, 57	
4.2	4, 8, 12, 16, 20, 26	3, 7, 9, 13, 15, 19, 25, 33	
4.3	14, 18, 20, 24, 36, 52	11, 13, 17, 21, 23, 25, 31, 35, 53, 57	62
4.4	12, 14, 48, 52, 64	13, 15, 23, 25, 33, 47, 53, 57, 87	72
4.4			72
4.5	30, 44, 62, 72	19, 33, 37, 63, 71	
4.7	2, 6, 14, 32	3, 5, 15, 23, 29, 31	
4.8	8, 12, 22	7, 11, 17	
4.9	6, 12, 20, 38, 44, 54, 62	7, 15, 19, 35, 37, 41, 51, 59	
.,,	-,,,,,,,	., -2, 12, 22, 21, 12, 22, 22	

^{*} CAS problems require the use of a technology tool (e.g., graphing calculators or a computer). You are encouraged to do these problems to enhance your understanding of the concepts involved.