KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS Term 162

STAT 212 BUSINESS STATISTICS II Second Major Exam <u>Allowed time 90 minutes</u> Wednesday April 12, 2017

Name:______ ID #:_____ Section #:_____ Srl #:____

Important Note:

- 1) You must **<u>show all work</u>** to obtain full credit for questions on this exam.
- 2) **DO NOT round** your answers at each step. Round answers only if necessary at your final step to <u>4 decimal places</u>.

Question No	Full Marks	Marks Obtained
Q1	14	
Q2	12	
Q3	7	
Q4	27	
Total	60	

Question One (14 points):

A medical researcher is interested in determining if there is a relationship between adults over 50 who exercise regularly and low, moderate, and high blood pressure. A random sample of 236 adults over 50 is selected and the results are given below.

	Blood Pressure							
Activity	Low	Moderate	High					
Reg.	39	62	25					
Exercise								
	29.8983							
	2.7708		0.3841					
No Reg.	17	65	28					
Exercise								
	26.1017							
		0.5693	0.4399					

Notes: 1. Second line in the cell shows the expected frequency. 2. Third line in the cell shows the chi-squared contribution.

Use 2.5 % significance level to support the claim that the percentage of regularexercisers among the three levels of blood pressure is not the same. (12 *points*)

H_0 :	
H_1 :	
Assumption(s):	
Test Statistic:	
Critical value:	
Decision rule & Decision:	

Question Two (12 points):

Referring to question one and the *partial* Excel output below,

- a. Complete the table. Justify your calculations.
- b. Which pair of Blood pressure levels is significantly different at the 2.5 % level? Justify your answer.

					Std. Error	
Blood	Sample	Sample		Absolute	of	Critical
Pressure	Proportion	Size	Comparison	Difference	Difference	Range
L	0.696		L to M	0.208	0.0758	
М		127	L to H			0.250
Н	0.472	53	M to H		0.0817	0.2822

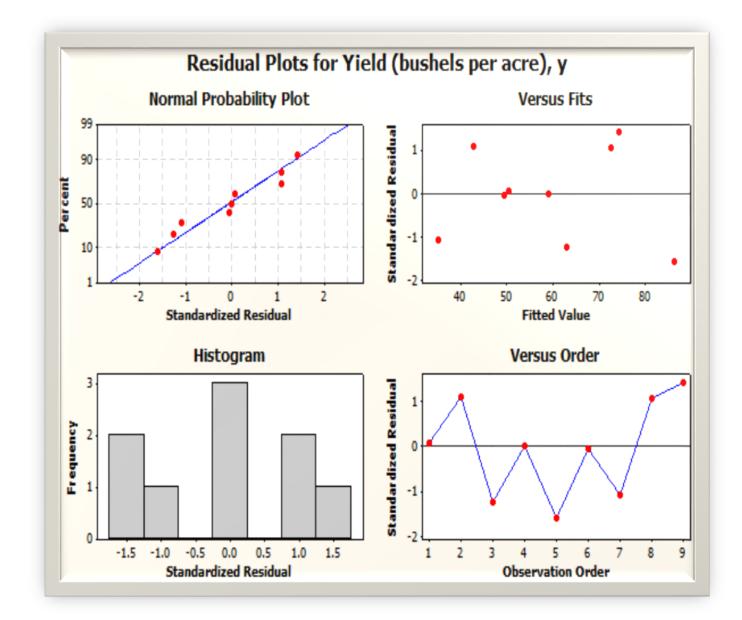
Question Three (7 points):

A researcher wants to determine whether there is a difference between two sunscreen lotions. Participants in a marathon race on a hot, sunny day applied lotion A to one arm and lotion B to the other arm. The results are shown in the table.

Lotion A

Lotion B	No burn (Success)	Burn (Failure)
No burn (Success)	737	40
Burn (Failure)	50	79

Is there a difference in the effectiveness of the two lotions in preventing sunburn? Use $\alpha = 0.05$ level of significance.


<i>H</i> ₀ :	
<i>H</i> ₁ :	
Assumption(s):	
Test Statistic:	
Critical value:	
Desision mula 8 Desision	
Decision rule & Decision:	
Conclusion:	

Question Four (27 points):

In an area of the Great Plains, records were kept on the relationship between the rainfall (in inches) and the yield of wheat (bushels per acre). Following is a sample of 9 observations:

Rainfall (in inches), <i>x</i>	10.5	8.8	13.4	?	18.8	10.3	7	15.6	16
Yield (bushels per acre), y	50.5	46.2	58.8	?	82.4	49.2	31.9	76	78.8

 S_{xx} = 115.1222, S_{yy} = 2294.82, S_{xy} = 504.13, \bar{x} =12.5444, \bar{y} = 59.2

Using the given information and the graphs above answer the following:

		1 .		1 1
a.	Estimate the	least squares	regression	model.

b. Find the standard error of estimate.

- c. What is your conclusion about the Normality assumption? Explain using the graphs above.
- d. Construct a 99% confidence interval about the slope of the true least-squares regression line. Interpret the results.

e. A research believes that the Yield increases by 5 bushels per acre, on average, when the rainfall increases by 1 inch. Do you agree with him? Explain.

f. Estimate the average yield when the rainfall level is 10.3 inches. Also compute the residual.

g. Construct a 95% confidence interval about the mean value of y, the yield, given x = 10.3 inches.

With Our Best Wishes