KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS AND STATISTICS Term 162

STAT 212 BUSINESS STATISTICS II Final Exam Sunday May 21, 2017

Name:	ID #:	Srl #:
	ID #	SII #

SECTION: <u>1</u>(E. AL-SAWI) <u>2</u>(R. ANABOSI)

Important Notes:

- 1) You must **show all work** to obtain full credit for questions on this exam.
- <u>DO NOT round</u> your answers at each step. Round answers only if necessary at your final step to <u>4 decimal places</u>.

Question No	Full Marks	Marks Obtained
Q1	15	
Q2	6	
Q3	12	
Q4	8	
Q5	8	
Q6	12	
Q7	14	
Q8	10	

Total	85	
-------	----	--

Question one (15 Marks) The table below shows the mean price for three types of energy products in the United States from 1992 to 2008: Electricity (\$

per	r 500	kWH), Na	tural Gas(5 per	40 therms)	, and Fue	l Oil (\$ p	er gallon)

Year	Electricity (ELC	Natural Gas (Gas)	Fuel Oil (Oil)	Price index (ELC)	Price index (Gas)	Price index (Oil)	unweighted aggregate price index
1992	44.501	26.376	0.985	100.00%	100.00%	100.00%	100.00%
1993	16.959	28.749	0.969	38.11%	109.00%	98.38%	64.95%
· · ·	•	- - -	•	100.31%	114.03%	10.00%	110.43%
2007	60.343	56.297	2.681	135.60%	213.44%	272.18%	166.04%
2008	64.172	63.748	3.752				

For year 2008 Calculate: (using 1992 as the base year)

 (6 Marks) The simple price index for electricity, natural gas, and fuel oil, using 1992 as the base year. (Write the answer in the TABLE)

(1 Mark) Interpretation for the Fuel Oil price index only:

2) (2 Mark) The unweighted aggregate price index for the group of three energy items. (Write the answer in the TABLE)

C................

- (1 Mark) Interpretation:
- Laspeyres price index for the group of three energy items for a family that consumed 5,000 kWH of electricity (10 units), 960 therms of natural gas (24 units), and 400 gallons of fuel oil (400 units) in 1992.

(2 Marks) Calculation:

- Paasche price index for the group of three energy items for a family that consumed 6,500 kWH of electricity, 1,040 therms of natural gas, and 235 gallons of fuel oil in 2008.
- (3 Marks) Calculation:

Question Two (6 Marks) A study was recently performed in which it attempted to develop a regression model to explain variation in the mileage ratings of new cars. At analysis, the estimated $\hat{y} = 34.2 - .003X_1 + 4.56X_2$ one stage of the regression took the following form: ,where X₁ = Vehicle weight, and X₂ =0 if standard transmission and X₂ =1 if automatic transmission. 1. The Interpretation of the regression coefficient for

- (i) (2 Marks) X_1 is:
- (ii) (2 Marks) X_2 is:

2. (2 Marks) Cadillac's 2000 with automatic transmission weights 4012 pounds. Provide an estimate of the average highway mileage you would expect to obtain from this model.

Question Three (12 Marks) Are gasoline prices higher during the height of the summer vacation season than at other times? A study on the mean monthly prices (in dollars per gallon) for unleaded gasoline in the United States from January 2006 to April 2010 resulted in the following output.

The regression equation is:

Log(Price) = 0.886 - 0.00001 Months - 0.048 Jan - 0.021 Feb + 0.003 Mar + 0.078 Apr + 0.153 May + 0.234 Jun + 0.246 Jul + 0.226 Aug + 0.194

Sep + 0.140 Oct + 0.067 Nov

Predictor	Coef	SE Coef	Т	P
Constant	0.8864	0.1107	8.01	0.000
Months	-0.000015	0.001815	-0.01	0.994
Jan	-0.0480	0.1310	-0.37	0.716
Feb	-0.0211	0.1309	-0.16	0.873
Mar	0.0030	0.1308	0.02	0.982
Apr	0.0776	0.1307	0.59	0.556
May	0.1533	0.1383	1.11	0.275
Jun	0.2339	0.1382	1.69	0.099
Jul	0.2459	0.1381	1.78	0.083
Aug	0.2262	0.1380	1.64	0.109
Sep	0.1944	0.1379	1.41	0.166
Oct	0.1402	0.1378	1.02	0.315
Nov	0.0670	0.1378	0.49	0.629

S = 0.194829 R-Sq = 27.1% R-Sq(adj) = 4.7%

Analys	is of	<u>Variance</u>			
Source	DF	SS	MS	F	P
Regression	12	0.55069	0.04589	1.21	0.312
Residual Error	39	1.48038	0.03796		
Total	51	2.03107			

I. (2 Mark) Unadjusted trend value for first quarter of first year is

II. (2 Marks) The estimated monthly compound growth rate is

III. (1 Mark) The estimated multiplier for August is

(2 Marks) Interpretation:

IV. (3 Marks) Predict the Gas price in December.

Source	DF	Seq SS
Months	1	0.00116
Jan	1	0.11895
Feb	1	0.10203
Mar	1	0.09089
Apr	1	0.02725
May	1	0.00015
Jun	1	0.02596
Jul	1	0.04770
Aug	1	0.05032
Sep	1	0.04700
Oct	1	0.03030
Nov	1	0.00899

V. (2 Marks) Which months have lower prices on average? Why?

Question Four (8 Marks)

A study on the mean monthly prices (in dollars per gallon) for unleaded gasoline in the United States from January 2006 to April 2010 is conducted. Part of the data is given in the table below

Price(\$)	2.197	2.357	2.254	2.498	2.914	2.867	2.869	3.004	2.845
Month	Jan-06	Feb-06	Mar-06	Apr-06	May-06	Jun-06	Jul-06	Aug-06	Sep-06

Four autoregressive models are shown in the following Minitab output.

Regression Analysis: Price(\$) versus Lag1 <u>The regression equation is</u> Price(\$) = 0.343 + 0.879 Lag1	Regression Analysis: Price(\$) versus Lag1, Lag2 The regression equation is Price(\$) = 0.478 + 1.36 Lag1 - 0.529 Lag2
Predictor Coef SE Coef T P Constant 0.3426 0.1817 1.89 0.065 Lag1 0.87881 0.06536 13.45 0.000 S = 0.254627 R-Sq = 78.7% R-Sq(adj) = 78.2%	Predictor Coef SE Coef T P Constant 0.4781 0.1625 2.94 0.005 Lag1 1.3554 0.1237 10.95 0.000 Lag2 -0.5285 0.1226 -4.31 0.000 S = 0.219836 R-Sq = 84.6% R-Sq(adj) = 83.9%
Regression Analysis: Price(\$) versus Lag1, Lag2, Lag3The regression equation is Price(\$) = 0.542 + 1.32 Lag1 - 0.436 Lag2 - 0.079 Lag3	Regression Analysis: Price(\$) versus Lag1, Lag2, Lag3, Lag4 The regression equation is Price(\$) = 0.578 + 1.33 Lag1 - 0.532 Lag2 + 0.127 Lag3 - 0.136 Lag4
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

- a. (2 Marks) Which model is significant in predicting the Gas Prices? Explain.
- b. (2 Marks) Using the 3-rd order autoregressive model, what is the estimated Gas Prices in Jun 2006?
- c. (2 Marks) Compute the third moving average using a period of length 5.

d. (2 Marks) Compute the third exponentially smoothed Gas Price if the smoothing constant is 0.4.

Question Five (8 Marks) A firm known to have a 56% market share wants to test whether this value is still valid in view of recent advertising campaigns of its competitors and its own increased level of advertising. A random sample of 500 consumers reveals 298 use the company's product. Is there evidence to conclude that the company's market share is no longer 56% at $\alpha = 0.01$?

Hypotheses (1 Mark):	H0:	H1:
Assumptions (1 Mark):		
Test Statistic (2 Marks):		
Critical Value(s) (1 Mark):		
Decision Rule (1 Mark):		
Conclusion (2 Mark):		

Question Six (3 pts*4=12 Marks) The Personal manger for a company has been asked to assist the production mangers in developing a staffing plan for the coming year. One factor that influences staffing is the amount of sick time taken by employees each month. The data collected *represent the number of sick days, by month* for the past three years.

Use the given figures to answer the questions:

A) Identify the time series components exist.

B) Use the linear trend model to predict the amount of sick time for the next two months. Do you think this model is appropriate? Explain.

Comment on the developed monthly seasonal indexes for period 8 and
9, (Note that the seasonal length is 12). Compare the accuracy of the seasonal decomposition model with previous linear model. Which model we will suggest to be used to predict the sales for the coming seasons. (HINT: use MAPE, MAD and MSD)

D) We used the moving average, single exponential and double exponential smoothing (Graphs are in the next page), which smoothing you suggest that we should use? Explain. (HINT: use MAPE, MAD and MSD)

Question Seven (14 Marks)

a well-known baseball analyst, wants to determine which variables are important in predicting a team's wins in a given baseball season. He has collected data related to wins (y), ERA (x1), saves (x2), runs scored (x3), hits allowed (x4), walks allowed (x5), and errors(x6) for the 2009 season. The coefficient of multiple determination (R_j^2) of each of the six predictors with all the other remaining predictors are, respectively, 91.013%, 27.431%, 91.038%, 62.990% , 39.247%, and 18.831%.

I. <u>Regression using all independent variables.</u>

Regression Analysis: Wins versus X1 (E.R.A.), X2(Runs Scored), ...

The regression equation is Wins = 78.7 - 9.39 X1 (E.R.A.) + 0.0739 X2 (Runs Scored) - 0.0176 X3 (Hits Allowed) - 0.0044 X4 (Walks Allowed) + 0.661 X5 (Saves) - 0.115 X6 (Errors) Predictor Coef SE Coef Т Ρ VIF 78.72 24.32 3.24 Constant 0.004 -9.394 3.568 -2.63 X1 (E.R.A.) 0.015 1.378 X2(Runs Scored) 0.073851 0.007288 10.13 0.000 X3 (Hits Allowed) -0.01755 0.01912 -0.92 0.368 X4 (Walks Allowed) -0.00444 0.01717 -0.26 0.798 0.08661 7.63 0.000 1.646 X5 (Saves) 0.66072 X6 (Errors) -0.11471 0.03283 -3.49 0.002 1.232

S = 2.48411 R-Sq = 96.2% R-Sq(adj) = 95.3%

1. (3 Marks) Compute the missing VIF numbers.

2. (2 Marks) Which of the predictors should first be dropped to remove collinearity? **Why?**

II. <u>Best Subset Regression:</u>

Best Subsets Regression: Y versus X1, X2, X4, X5, X6 Response is Y

			Mallows		Х	Х	Х	Х	Х
Vars	R-Sq	R-Sq(adj)	Ср	S	1	2	4	5	6
1	61.4	60.0	212.0	7.2183				Х	
1	40.6	38.5	340.5	8.9579	Х				
2	82.9	81.6	81.4	4.8929	Х	Х			
2	75.7	73.9	126.0	5.8351		Х		Х	
3	94.3	93.6	13.4	2.8908	Х	Х		Х	
3	84.4	82.6	74.3	4.7640	Х	Х			Х
4	96.0	95.4	4.4	2.4443	Х	Х		Х	Х
4	94.3	93.3	15.4	2.9480	Х	Х	Х	Х	
5	96.1	95.3	6.0	2.4760	Х	Х	Х	Х	Х

State the predictors that will be selected for the best subset regression

models, based on

i) R-Sq criteria (1)

ii) R-Sq (adj) criteria (1)

iii) Mellows Cp criteria (2)

III. The analyst included X5_sq (the square of X5) to the list of independent variable. Use the MINITAB outputs to answer the following questions:

Stepwise Reg	gression:	Y versus	X1, X2, X	<u> </u>	, X5_sq
Alpha-to-	Enter: 0	.15 Alp	ha-to-Re	move: 0.1	.5
Response is	Y on 6	predicto	rs, with	N = 30	
Step	1	2	3	4	
Constant	52.39	14.73	67.01	76.99	
X5_sq	0.0173	0.0144	0.0090	0.0090	
T-Value	6.88	6.37	7.39	8.45	
P-Value	0.000	0.000	0.000	0.000	
X2 T-Value P-Value		0.0568 3.57 0.001	0.0757 9.67 0.000	0.0705 9.98 0.000	
X1 T-Value P-Value			-13.3 -9.65 0.000	-12.6 -10.32 0.000	
X6 T-Value P-Value				-0.094 -3.01 0.006	
S	7.09	5.95	2.83	2.47	
R-Sq	62.80	74.72	94.48	95.96	
R-Sq(adj)	61.47	72.85	93.85	95.31	
Mallows Cp	194.0	125.5	10.6	3.9	

(I) Which predictor will be chosen as the first variable entering in to the model

(1)

- (II) Write the prediction equation for the best model. (1)
- (III) Which of the predictor(s) of the best selected model are significant at 0.005 significance level?
 - (2)

(IV) Are there any predictors that have been removed from the model after selection? If yes, state them.

(1)

Question Eight (2 pts*5=10 Mark

- 1. If we are performing a two-tailed test of whether μ = 100, the probability of rejecting the H_0 when the true mean is 105 will be ______ the probability of rejecting the H_0 when the true mean is 110.
 - A. less than
 - B. greater than
 - C. equal to
 - D. not comparable to
- 2. If we are testing for the difference between the means of two paired populations with samples of $n_1 = 20$ and $n_2 = 20$, the number of degrees of freedom is equal to:
 - A. 39.
 - B. 38.
 - C. 19.
 - D. 18.
- 3. When formulating a hypothesis test, which of the following statements is TRUE?
 - A. The null hypothesis should never contain the equality.
 - B. The null and alternative hypotheses should be stated in terms of the population parameters.
 - C. If possible, the research hypothesis should be formed as the null hypothesis.
 - D. The null hypothesis should be established such that the chance of making a Type I error is minimized.
- 4. A manufacturer of industrial plywood has a contract to supply a boat maker with a large amount of plywood. One of the specifications calls for the standard deviation in thickness to not exceed .03 inches. A sample of n = 30 sheets was sampled randomly from a recent production run. The mean thickness was right at the ³/₄ inch target thickness and the sample standard deviation was 0.05 inches. Testing at the 0.05 level of significance,

Which of the following steps is **NOT correct** for this hypothesis testing?

- A. The test hypotheses are $H_0: \sigma \le 0.03 vsH_1: \sigma > 0.03$
- B. The critical value is: $\chi^2_{.95,29} = 17.7084$
- C. The test statistic is $\chi^2_{cal} = 80.5556$
- D. The conclusion is that there is not enough evidence to indicate that the standard deviation in thickness to not exceed 0.03 inches.

5. Based on the following residual plot for simple linear regression model

which of the following is $\underline{\textbf{NOT}}$ true:

- A. based on the histogram of the errors, the normality assumption is violated
- B. based on Residual vs Fitted, the errors are independent
- C. based on the normal probability plot, there is no linear relationship between the two variables.
- D. the mean of the errors equal zero.