King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 601 Final Exam – 2016–2017 (162) Wednesday, May 24, 2017

Allowed Time: 120 minutes

Instructor: Dr. Boubaker Smii

Name: _____

ID #: _____

Section #: _____

Serial Number: _____

Instructions:

1. Write clearly and legibly. You may lose points for messy work.

2. Show all your work. No points for answers without justification !

Question #	Grade	Maximum Points
1		11
2		14
3		16
4		09
5		20
6		10
Total:		80

Exercise 1:

Let X be a random variable. i)- Show that, if X has exponential distribution of rate $\lambda > 0$. then

$$P(X > t + s) = P(X > t) P(X > s), \quad s, t \ge 0.$$
 (a)

ii)- Show that the equality (a) is equivalent to:

$$P(X > t + s \mid X > s) = P(X > t), \quad s, t \ge 0.$$
 (b)

iii)- Assume now that X(t) = N(t), t > 0 has the Poisson distribution with parameter $\lambda t, \lambda > 0$ i.e. $P(N(t) = n) = e^{-\lambda t} \frac{(\lambda t)^n}{n!}$. Find the expectation of N(t).

Exercise 2:

Let B_t be a standard Brownian motion.

1- Write down the stochastic differential equation corresponding to the process $Y_t = B_t^4$ and deduce $\mathbb{E}(B_t^4)$.

2-Write down the stochastic differential equation corresponding to the process $Y_t = t B_t$.

3-Verify that $X_t = e^{B_t - \frac{t}{2}}$ satisfies the stochastic differential equation: $dX_t = X_t dB_t$.

Exercise 3:

Let X_t, Y_t be Itô processes in \mathbb{R} . 1)- Prove that:

$$X_t Y_t = X_0 Y_0 + \int_0^t Y_s \, dX_s + \int_0^t X_s \, dY_s + \int_0^t \, dX_s \, dY_s$$

2)- Let
$$F_t = \exp(-\alpha B_t + \frac{1}{2}\alpha^2 t), \ \alpha \in \mathbb{R}$$
.
i)- Find dF_t .

ii)- Given that: $dY_t = r dt + \alpha Y_t dB_t$, $r \in \mathbb{R}$. Prove that $Y_t = Y_0 F_t^{-1} + r F_t^{-1} \int_0^t F_s ds$ (**Hint**: Use 1)).

Exercise 4: Use Itô's formula to write the following stochastic processes X_t on the standard form. a)- $X_t = B_t^2$, where B_t is 1-dimensional Brownian motion.

b)- $X_t = 2 + t + e^{B_t}$, where B_t is 1-dimensional Brownian motion.

c)- $X_t = B_1^2(t) + B_2^2(t)$, where (B_1, B_2) is a 2-dimensional Brownian motion.

Exercise 5: To describe the motion of a pendulum with small, random perturbations in its environment we consider the stochastic differential equation :

$$U_t'' + \left(1 + \epsilon W_t\right) U_t = 0; \quad U_0, U_0' \text{ given}, \tag{c}$$

where W_t is a one-dimensional white noise, ϵ a positive constant.

1- Show that the stochastic differential equation (c) can be written in the following form:

$$dX_t = K X_t \, dt - \epsilon \, L \, X_t \, dB_t, \tag{d}$$

where X_t, K, L are suitable matrices and B_t a Brownian motion.

2- Show that Y_t solves a stochastic Volterra equation of the form

$$Y_t = Y_0 + Y'_0 t + \int_0^t a(t,r) Y_r dr + \int_0^t \gamma(t,r) Y_r dB_r, \qquad (e)$$

where a(t,r) = r - t and $\gamma(t,r) = \epsilon (r - t)$.

$$dX_t = \mu X_t dt + \sigma X_t dB_t, \ \mu, \sigma > 0 \tag{f}$$

Prove that the solution of the SDE (f) is given by a Geometric Brownian motion.

B-Let S_t be the price of a stock at time t. Suppose that stock price is modelled as a geometric Brownian motion $S_t = S_0 e^{\mu t + \sigma B_t}$, where B_t is a standard Brownian motion.

Suppose that the parameter values are $\mu = 0.055$ and $\sigma = 0.07$. Given that $S_5 = 100$, find the probability that S_{10} is greater than 150. (you may express the result as $\Phi(\alpha)$, where Φ is the standard Normal distribution function and α a real number.)