King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 601 Exam I– 2016–2017 (162) Tuesday, April 25, 2017

Allowed Time: 90 minutes

Instructor: Dr. Boubaker Smii

Name: _____

ID #: _____

Section #: _____

Serial Number: _____

Instructions:

1. Write clearly and legibly. You may lose points for messy work.

2. Show all your work. No points for answers without justification !

Question #	Grade	Maximum Points
1		10
2		10
3		10
4		20
Total:		50

Exercise 1:

Let ψ be a characteristic function of a given random variable X.

1- Prove that

$$Re\left(1-\psi(t)\right) \ge \frac{1}{4}Re\left(1-\psi(2t)\right), \ t \in \mathbb{R}.$$
 (a)

2- Deduce from equation (a) that

$$1 - |\psi(2t)| \le 8 \left(1 - |\psi(t)| \right), t \in \mathbb{R}.$$
 (b)

Exercise 2:

1- Let $\overline{\{N(t), t \ge 0\}}$ be a Poisson process with rate λ .

i)- Find $\mathbb{E}(N(t))$.

ii)- Assume that $\lambda = 4$. Compute: $\mathbb{E}(3N(2) - 5N(4))$.

2- Let X and Y be two random variables with a Poisson distributions with parameters λ_1 and λ_2 respectively. If X and Y are independent, find the distribution of the random variable X + Y.

Exercise 3: Let $t_0^n < t_1^n < \cdots < t_n^n = T$, where $t_i^n = i\frac{T}{n}$, be a partition of the interval [0, T] into n equal parts. We denote by

$$\Delta_i^n B = B(t_{i+1}^n) - B(t_i^n) \tag{c}$$

the corresponding increments of the Brownian motion B(t).

Show that

$$\lim_{n \to +\infty} \sum_{i=0}^{n-1} (\Delta_i^n B)^2 = T, \quad in \ L^2.$$
 (d)

Exercise 4: I- Consider the standard Brownian motion $\{B_t, t \ge 0\}$.

- a)- Show whether or not $V_t = \sqrt{t} B_t$ is a standard Brownian motion.

b)- Find $\mathbb{E}(|B_t - B_s|^2)$. c)- Given that $\int_{\mathbb{R}} e^{\frac{-(x-i\lambda t)^2}{2t}} dx = \sqrt{2\pi t}$, compute the characteristic function of B_t . d)- Deduce from c) $\mathbb{E}(B_t^4)$.

II- Give two major differences between the Riemann and $\text{It}\hat{o}$ integrals.