King Fahd University of Petroleum and Minerals Department of Mathematical Sciences SYLLABUS Semester II, 2016-2017 (162) Dr. Monther R. Alfuraidan

Course #:	Math 531			
Title:	Real Analysis			
Textbook:	Real Analysis by H.L. Royden and P.M. Fitzpatrick.			
Additional Reading:	Real and Abstract Analysis by E. Hewitt and K. Stromberg			
Lecturer:	Name: Monther Alfuraidan Office: 5-313 Phone: 1977			
E-mail: monther@kfupm.edu.sa (The best way to reach n				
	Web Site: http://faculty.kfupm.edu.sa/math/monther			
	Office hours: 12:00 – 1:00PM (MW) (Other times by appointment)			

Objectives: The course is designed to introduce graduate students to measure theory. Stress will be particularly given to the Lebesgue measure, integration, and the classical L^p spaces.

Week	Date	Sec. #	Topics			
1	February 05-09	2.1-2.2	Introduction, Lebesgue outer Measure			
		2.3	The σ -Algrbra of Lebesgue Measurable sets			
2	February 12-16	2.4	Outer and Inner Approximation of Lebesgue Measurable			
		2.5	Countable Additivity, Continuity, and the Borel-Cantelli Lemma			
3	February 19-23	3.1,3.2	Sums, Products, and Compositions			
			Sequential Pointwise Limits and Simple Approximation			
		3.3	Littlewood's Three Principles, Egoroffs Theorem, and Lusin's			
			Theorem			
4	Feb 26- Mar 02	4.1	The Riemann Integral			
		4.2	The Lebesgue Integral of a Bounded Measurable Function over a Set			
			of Finite Measure			
		4.2	Continue			
5	March 05-09	4.3	The Lebesgue Integral of a Measurable Nonnegative Function			
		4.4	The General Lebesgue Integral			
6	March 12-16		Review and catch up			
		Exam I	Wednesday, Mar 15, 2017, Material (2.1-4.4)			
7	March 19-23	4.5,	Countable Additivity and Continuity of Integration			
/		4.6	Uniform Integrability: The Vitali Convergence			
8	March 26-30	5.1	Uniform Integrability and Tightness: A General Vitali Convergence			
			Theorem			
		5.2	Convergence in Measure			
		5.3	Characterizations of Riemann and Lebesgue Integrability			
April 02-06: Midterm Vacation						
	Apr 09-13	6.1	Continuity of Monotone Functions			
0		6.2	Differentiability of Monotone Functions: Lebesgue's Theorem			
9		6.3	Functions of Bounded Variation: Jordan's Theorem			
		6.4	Absolutely Continuous Functions			
10	Apr 16-20	6.5	Integrating Derivatives: Differentiating Indefinite Integrals			
		6.6	Convex Functions			

11	Apr 23-27		Review and catch up	
		Exam II	Sunday, Mar 30, 2014, Material (4.5-6.6)	
12	Apr 30- May 04	7.1	Normed Linear Spaces	
		7.2	The Inequalities of Young, Holder, and Minkowski	
		7.3	L^p is Complete: The Riesz-Fischer Theorem	
13	May 07-11	17.1	Measures and Measurable Sets	
		17.2	Signed Measures: The Hahn and Jordan Decompositions	
14	May 14-18	18.1	Measurable Functions	
		18.2	Integration of Nonnegative Measurable Functions	
15	May 21-25		Review and Catch up	
Final Exam: TBA Material: Comprehensive				

Supplemental Instruction:

The students will find supplemental instruction material prepared by Dr Khamsi at: <u>http://www.drkhamsi.com/classe/RA/</u> This webpage contains many exercises which deal with the content of this course. Dr Khamsi may be contacted at: Mohamed@utep.edu , if you have any question.

Outcomes:

It is expected that the student shall be able to know and use the concept of Lebesgue measure on real line, general measure theory, convergence theorems, Lusin's theorem, Egorov's theorem, L^p-spaces, Fubini's theorem, functions of bounded variation, absolutely continuous functions and Lebesgue differentiation theorem.

Evaluation Scheme:

Student will be evaluated and graded on the basis of:

- Two Major Exams (20 points each) 40%
- Homework 20%
- Final Exam 40%