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Math 531 (Real Analysis) Final Exam Spring 2016(162)- 120 minutes

MRF Solution

Notation: R = the real numbers, N = the natural numbers, m = Lebesgue measure.
Instructions: Work any three complete problems or any six different parts

(1) (a) For x ∈ (0,+∞), set fn(x) = esin(x
2/n)

1+x
for each n ∈ N.

(i) Evaluate with proof lim
n→∞

n∫
0

(fn(x))2dx.

(ii) Evaluate with proof lim
n→∞

n∫
0

fn(x)dx.

Solution: (i) We first rewrite the integrals so that the limits of integration are
independent of n as follow:

lim
n→∞

n∫
0

(fn(x))2dx = lim
n→∞

∞∫
0

χ(0,n)(fn(x))2dx.

Now χ(0,n)(fn(x))2 = χ(0,n)
e2 sin(x2/n)

(1+x)2
→ 1

(1+x)2
as n → ∞, and for each n ∈ N,∣∣∣χ(0,n)(fn(x))2

∣∣∣ ≤ e2

(1+x)2
for each x ∈ (0,∞). Further,

∞∫
0

e2

(1+x)2
dx = e2. The

Lebesgue Dominated Convergence Theorem then gives that

lim
n→∞

∞∫
0

χ(0,n)(fn(x))2dx =

∞∫
0

lim
n→∞

χ(0,n)(fn(x))2dx =

∞∫
0

1

(1 + x)2
= 1.

(ii) Again we rewrite the integrals so that the limits of integration are inde-
pendent of n, but here we note that χ(0,n)fn(x) → 1

1+x
/∈ L1(R,m), and the

convergence is not monotone. But if we use Fatou’s lemma, we get,

lim inf
n→∞

∞∫
0

χ(0,n)fn(x)dx ≥
∞∫
0

lim inf
n→∞

χ(0,n)fn(x)dx =
∞∫
0

1
1+x

= ∞. Hence we have

lim
n→∞

∞∫
0

χ(0,n)fn(x)dx =∞.

(b) Let f and g be nonnegative integrable functions on [0, 1] with

1∫
0

f(x)dx =

1∫
0

g(x)dx = 1.
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Let A = {x ∈ [0, 1] : f(x) ≤ 3} and B = {x ∈ [0, 1] : g(x) ≤ 3}. Show that
m(A ∩B) ≥ 1

3
.

Solution: We have f ∈ L1([0, 1]) with ||f ||1 = 1. Let A′ denote the complement
of A in [0, 1], so A′ = {x ∈ [0, 1] : f(x) > 3}. By Chebyshev’s inequality

(and the nonnegativity of f), m(A′) ≤ ||f ||1
3

= 1
3
, and the same is, of course,

true of g; m(B′) ≤ 1
3
. Thus m(A′ ∪ B′) ≤ m(A′) + m(B′) ≤ 2/3. Now

m(A ∩B) = 1−m((A ∩B)′) = 1−m(A′ ∪B′) ≥ 1− 2
3

= 1
3
.

(2) Identify which of the following statements is true and which is false. If a statement
. is true, give reason. If a statement is false, provide a counterexample

(a) (i) Let (X,M, µ) be a measure space and f be a measurable function, then
f = g a.e. implies g is measurable.

Solution: False. Let E be a subset of a set of measure zero that does not
belong toM. Let f = 0 on X and g = χE. Then f = g a.e. on X while f
is measurable and g is not.

(ii) Suppose that {fn}n∈N is bounded in L1([0, 1]). Then {fn}n∈N is uniformly
integrable over [0, 1].

Solution: False. Consider the sequence fn = nχ[0,1/n]. Clearly, ||fn||1 = 1
for all n ≥ 1 and therefore {fn} is bounded in L1([0, 1]). However,∫

[0,1/n]

fn = 1,

for all n and therefore cannot be uniformly integrable over [0, 1]

(b) If f, g ∈ L2(R), then lim
t→∞

∫
f(x)g(tx)dm = 0.

Solution: True. Since f, g ∈ L2(R), then there exist 0 < M < ∞ and 0 <

N < ∞ such that
( ∫
|f(x)|2

) 1
2
< M and

( ∫
|g(x)|2

) 1
2
< N . Now, by Hölder

inequality we have |
∫
f(x)g(tx)dm| ≤

( ∫
|f(x)|2dx

) 1
2
( ∫
|g(tx)|2dx

) 1
2

=( ∫
|f(x)|2dx

) 1
2
( ∫
|g(y)|2 1

t
dy
) 1

2
= 1

t1/2

( ∫
|f(x)|2dx

) 1
2
( ∫
|g(y)|2dy

) 1
2
< MN

t1/2
.

Hence lim
t→∞

∫
f(x)g(tx)dm = 0.

3(a) Let {En} be a sequence of measurable subsets of [0, 1] and suppose thatm(En) ≤
1/n. Show that if f =

∑
χEn/n and if 1 ≤ p <∞ then f ∈ Lp([0, 1]).

Solution: ||f ||p =
( ∫

[0,1]
|f |p
)1/p

=
( ∫

[0,1]
|
∑
χEn/n|p

)1/p
≤Minkowski∑(∫

[0,1]
|χEn/n|p

)1/p
=
∑(∫

En
|1/n|p

)1/p
=
∑(

1/npm(En)
)1/p
≤m(En)≤1/n
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∑(
1/np+1

)1/p
=
∑(

1/n1+1/p
)
. Since 1 + 1/p > 1, then by p-serious test

||f ||p ≤
∑(

1/n1+1/p
)
<∞.

(b) (i) Let f ∈ BV ([a, b]). Show that if f ≥ c on [a, b] for some constant c > 0,
then 1

f
∈ BV ([a, b]).

Solution: Let P = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b].
Then

V (
1

f
,P) =

n∑
k=1

∣∣∣ 1

f(xk)
− 1

f(xk−1)

∣∣∣ =
n∑
k=1

|f(xk)− f(xk−1)|
|f(xk)f(xk−1)|

.

Since f ≥ c > 0,

|f(xk)− f(xk−1)|
|f(xk)f(xk−1)|

≤ |f(xk)− f(xk−1)|
c2

.

It follows that

V (
1

f
,P) ≤ 1

c2

n∑
k=1

|f(xk)− f(xk−1)| =
1

c2
V (f,P) ≤ 1

c2
TV (f).

Since TV (f) <∞, TV ( 1
f
) <∞.

(ii) Let f be a real-valued function on [a, b] satisfying the Lipschitz condition
on [a, b]. Show that f is absolutely continuous on [a, b].

Solution: The Lipschitz condition on [a, b]:

∃ K > 0 : ∀x, y ∈ [a, b], |f(x)− f(y)| ≤ K|x− y|.

Given any ε > 0. Let δ = ε
K

. Let {[ci, di] : i, 1, · · ·, n} be a family of

disjoint subintervals of [a, b] with
n∑
i=1

(di − ci) < δ. Then, by the Lipschitz

condition, we have

n∑
i=1

|f(ck)− f(dk)| ≤
n∑
i=1

K(dk − ck) ≤ K

n∑
i=1

(dk − ck) < K.
ε

K
= ε.

Thus f is absolutely continuous on [a, b].

4(a) Let µ and ν be finite signed measures. Define µ ∧ ν = 1
2
(µ+ ν − |µ− ν|). If µ

and ν are positive measures, show that they are mutually singular if and only
if µ ∧ ν = 0.

Solution: Suppose µ and ν are positive measures. If µ ⊥ ν, then there are
disjoint measurable sets A and B such that X = A ∪ B and µ(B) = 0 = ν(A).
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For any measurable set E, we have (µ∧ν)(E) = (µ∧ν)(E∩A)+(µ∧ν)(E∩B) =
min(µ(E ∩A), ν(E ∩A)) +min(µ(E ∩B), ν(E ∩B)) = 0. Conversely, suppose
µ ∧ ν = 0. If µ(E) = ν(E) = 0 for all measurable sets, then µ = ν = 0 and
µ ⊥ ν. Thus we may assume that µ(E) = 0 < ν(E) for some E. If ν(Ec) = 0,
it follows that ν ⊥ ν. On the other hand, if ν(Ec) > 0, then µ(Ec) = 0 so
µ(X) = µ(E) + µ(Ec) = 0. Thus µ = 0 and we still have µ ⊥ ν.

(b) Let (X,M, µ) be a measure space and {fn} be a sequence of real-valued mea-

surable functions on X such that, for each natural number n, µ
(
{x ∈ X :

|fn(x) − fn+1(x)| > 1/2n}
)
< 1/2n. Show that {fn} is pointwise convergent

a.e. on X. (Hint: Use the Borel-Cantelli Lemma.)

Solution: Let En = {x ∈ X : |fn(x) − fn+1(x)| > 1/2n}. Then {En}∞n=1 is a

countable collection of measurable sets with
∞∑
n=1

µ(En) <
∞∑
n=1

1/2n = 1. Hence,

by the Borel-Cantelli Lemma, almost all x ∈ X belong to at most a finite
number of the E ′ns. Thus for each natural number n and for almost all x ∈ X,
we have |fn(x)− fn+1(x)| ≤ 1/2n. So {fn} is is pointwise convergent a.e. on X.
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