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Math 531 (Real Analysis) Major Exam I Spring 2016(162)- 120 minutes

ID: Solution NAME: MRF

Notation: R = the real numbers, N = the natural numbers, m = Lebesgue measure.
Instructions: Work any five problems

(1) (a) What does it mean to say that a function f : R→ R is measurable?

Solution: An extended real-valued function f defined on R is said to be
Lebesgue measurable, or simply measurable, provided it satisfies one of the
following four equivalent conditions:

(i) For each real number c, the set {x : f(x) > c} is measurable.

(ii) For each real number c, the set {x : f(x) ≥ c} is measurable.

(iii) For each real number c, the set {x : f(x) < c} is measurable.

(iv) For each real number c, the set {x : f(x) ≤ c} is measurable.

(b) Prove that if f : R→ R is increasing (i.e. f(x) ≤ f(y) whenever x ≤ y) then it
is measurable.

Solution: (1) If f is increasing, the set {x ∈ R : f(x) > a} is an interval for all
a, hence measurable. Therefore, by the definition (see (a) above), the function
f is measurable.
(2) Let D be the set of discontinuities of f . Then D is countable, hence of
measure zero. The restriction f |D is measurable on D because every subset of
D is measurable, and the restriction f |R∼D is measurable on R ∼ D because it
is continuous. Therefore, f is measurable (see Proposition 5 - Section 3,1).

(c) Suppose that f : [0, 1]→ R is measurable and that there is δ > 0 such that, for
each n ∈ N, m{x : |f(x)| ≤ 1/n} ≥ δ.

(i) Explain why {x : |f(x)| ≤ 1/n} is measurable.

(ii) Explain why there is at least one s ∈ [0, 1] such that f(s) = 0.

Solution:(i) Since f is measurable, |f | is measurable as its the composition of con-
tinuous function g(x) = |x| with a measurable function f) and {x : |f(x)| ≤ 1/n} =
|f |−1[0, 1/n]. Since [0, 1/n] is a Borel set, |f |−1[0, 1/n] is measurable.

(ii) Let En = {x : |f(x)| ≤ 1/n}. Then En ⊃ En+1, ∩En = {x : f(x) = 0},
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E1 ⊂ [0, 1]. So m{x : f(x) = 0} = lim
n→∞

m(En) ≥ δ (Excision property of m). Then

{x : f(x) = 0} 6= ∅ (Since m(∅) = 0). So ∃ s so that f(s) = 0.

(2) (a) For a measurable subset E ⊆ R, and simple function ϕ : R → R, how is the
(Lebesgue) integral

∫
E
ϕdm defined?

Solution: For a simple function ϕ defined on a set of finite measure E, we
define the integral of ϕ over E by∫

E

ϕ =
n∑
i=1

aim(Ei),

where ϕ =
n∑
i=1

aiχEi
and Ei = {x ∈ E : ϕ(x) = ai}.

(b) State Fatou’s Lemma for a sequence of measurable functions.

Solution: Let {fn} be a sequence of measurable functions on E. If {fn} → f
pointwise a.e. on E, then∫

E

f =

∫
E

lim fn ≤ lim inf

∫
E

fn.

(c) State the Monotone Convergence Theorem.

Solution: Let {fn} be an increasing sequence of nonnegative measurable func-
tions on E. If {fn} → f pointwise a.e. on E, then

lim
n→∞

(

∫
E

fn) =

∫
E

( lim
n→∞

fn) =

∫
E

f.

(d) Prove that Fatou’s Lemma implies the Monotone Convergence Theorem.

Solution: According to Fatou’s Lemma,∫
E

f ≤ lim inf(

∫
E

fn).

Also, notice that if f is a nonnegative measurable function on E and E0 is a
subset of E of measure zero, then∫

E

f =

∫
E∼E0

f (∗).

However, for each n, fn ≤ f a.e. on E (note that f is measurable), and by
the monotonicity of integration for nonnegative measurable functions and (∗),∫
E
fn ≤

∫
E
f . Therefore,

lim sup

∫
E

fn ≤
∫
E

f.

Hence
∫
E
f = lim

n→∞

∫
E
fn.
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(3) Identify which of the following statements is true and which is false. If a statement
. is true, give reason. If a statement is false, provide a counterexample

(a) If f is a bounded real-valued function on [0, 1] which is Lebesgue integrable then
f is Riemann integrable.

Solution: False. Consider the Dirichlet function f(x) =

{
1 x ∈ Q ∩ [0, 1];
0, x ∈ [0, 1] ∼ Q.

(b) Suppose that (En) is a sequence of pairwise disjoint measurable subsets of [0, 1].
Then lim

n→∞
m(En) = 0.

Solution: True, indeed since En ⊂ [0, 1] ∀n ∈ N, then
∞⋃
n=1

En ⊂ [0, 1]. By

monotonicity of the measure m(
∞⋃
n=1

En) ≤ m([0, 1]) = 1. Hence
∞∑
n=1

m(En) ≤ 1

since m is countably additive. Thus lim
n→∞

m(En) = 0.

(c) If f(x) =
∫
R

(sin t)2

t2+x2
dt, then lim

x→∞
f(x) = 0.

Solution: (sin t)2

t2+x2
≤ 1

t2+x2
for all t. Hence by monotonicity of Riemann in-

tegrable functions
∫
R

(sin t)2

t2+x2
dt ≤

∫
R

1
t2+x2

dt = 1
x2

∫
R

1
( t
x
)2+1

dt = 1
x2

[tan−1 t
x
]+∞−∞ =

π
x2
<∞. Since f(x) is positive and limit of π

x2
goes to zero as x goes to∞, then

lim
x→∞

f(x) = 0.

(4) (a) State Egoroff’s Theorem.

Assume E has finite measure. Let {fn}, be a sequence of measurable functions
on E that converges pointwise on E to the real-valued function f . Then for
each ε > 0, there is a closed set F contained in E such that {fn} → f uniformly
on F and m(E ∼ F ) < ε.

(b) Let f be a real-valued measurable function defined on [0, 1]. Prove that for each
ε > 0 there is a measurable set Eε ⊆ [0, 1] so that m([0, 1] ∼ Eε) < ε and so
that f is bounded on Eε.

Solution (1) (Using Egoroff’s Theorem) Let fn = fχ(|f |≤n). Since f is mea-
surable, {x : |f(x)| ≤ n} = f−1[−n, n] is measurable. So, χ(|f |≤n) is a mea-
surable function and hence fχ(|f |≤n), the product of two measurable func-
tions is measurable. If |f(x)| < N then fn(x) = f(x) for all n ≥ N . So,
lim
n→∞

fn(x) = f(x) ∀x. Then by Egoroff’s Theorem ∀ ε > 0 ∃ Eε ⊂ [0, 1] such

that m([0, 1] ∼ Eε) < ε and fn → f uniformly on Eε. Since fn → f uniformly,
in particular, ∃ N such that |fn(x)− f(x)| < 1 for all n ≥ N and x ∈ Eε. Thus
|f(x)| < 1 + |fn(x)| ≤ N + 1 on Eε.

3



Or (2) Let En = {x : |f(x)| ≥ n}. Then En+1 ⊂ En, ∩En = ∅ and m(E1) ≤
m[0, 1] = 1. Since f is real valued function, then ∀ ε > 0 ∃ N such that
m(EN) < ε. And |f(x)| ≤ N on [0, 1] ∼ EN .

(5) Suppose that f is integrable on [0, 1]. Let pn(x) = xn, n ∈ N.

(a) State why, for each n, fpn is measurable and integrable on [0, 1].

Solution: pn is continuous on [0, 1] and so pn is measurable. Then fpn, the
product of two measurable functions is measurable. Moreover, |pn| ≤ 1 on [0, 1],
so |fpn| ≤ |f | and since f is integrable so is each fpn.

(b) Prove that lim
n→∞

∫
[0,1]

f.pndm = 0.

Solution: Now lim
n→∞

f(x)pn(x) = 0 unless x = 1 or |f(x)| =∞. So, lim
n→∞

f(x)pn(x) =

0 a.e. Since |fpn| ≤ |f | we may apply the Dominated Convergence Theorem to
get lim

n→∞

∫
[0,1]

fpndm =
∫
[0,1]

lim
n→∞

fpndm = 0.

(6) (a) State the Dominated Convergence Theorem.

Solution Let {fn} be a sequence of measurable functions on E. Suppose there
is a function g that is integrable over E and dominates {fn} on E in the sense
that |fn| ≤ g on E for all n. If {fn} → f pointwise a.e. on E, then f is
integrable over E and lim

n→∞

∫
E
fn =

∫
E
f .

(b) Use the Dominated Convergence Theorem to find

lim
n→∞

∞∫
0

fndm,

where for each n ≥ 1 the function fn : [0,∞)→ R is defined by

fn(x) =
x sin πnx

1 + nx3
.

Solution: For n ≥ 1, we have |fn(x)| = |x sinπnx
1+nx3

| ≤ x
1+nx3

≤ x
nx3

= 1
nx2
≤ 1

x2
for

all x ∈ (0,∞). Also note that the function 1
x2

is integrable over [0,∞) (
∫
[0,∞)

1
x2

=∫
(0,∞)

1
x2
<∞).

Thus, by the Dominated Convergence Theorem and the squeezing Theorem, we
have

lim
n→∞

∫
(0,∞)

fn =

∫
(0,∞)

0 = 0.

Notice that
∫
E
f =

∫
E∼E0

f if m(E0) = 0.
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(7) (a) State Beppo Levis Theorem.

Solution Let {fn} be an increasing sequence of nonnegative measurable func-
tions on E. If the sequence of integrals {

∫
E
fn} is bounded, then {fn} converges

pointwise on E to a measurable function f that is finite a.e on E and

lim
n→∞

∫
E

fn =

∫
E

f <∞.

(b) Use Beppo Levis Theorem, and the fact that
∑
n≥1

1
n2 = π2

6
, to prove that

∞∫
0

x

ex − 1
dx =

π2

6
.

Solution: First notice that x
ex−1 = xe−x

1−e−x . Now, using the Geometric serious

1 + a+ a2 + ...+ an = 1−an+1

1−a , if |a| < 1, we have 1
1−e−x =

∞∑
n=0

e−nx for x > 0. So,

x

ex − 1
=

xe−x

1− e−x
=
∞∑
n=0

xe−(n+1)x.

Let f(x) = x
ex−1 and define the sequence (fn) by fn(x) = fχ(0,n] for each

n ≥ 1. Notice that (fn) is an increasing sequence of nonnegative measurable
functions (fn is the product of two measurable functions (χ(0,n] is measurable
since (0, n] is measurable and f is measurable since it is continuous on (0,∞)).
Moreover, fn → f a.e. on [0,∞). Using Beppo Levis Theorem and integration

by parts, we have lim
n→∞

∞∫
0

fndx =
∫∞
0
fdx =

∞∫
0

x
ex−1dx =

∞∫
0

∞∑
n=0

xe−(n+1)xdx =

∞∑
n=0

∞∫
0

xe−(n+1)xdx =
∞∑
n=0

1
(n+1)2

=
∞∑
n=1

1
(n)2

= π2

6
.

Dr. M. R. Alfuraidan
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