King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics Math 531 (Real Analysis) Final Exam Spring 2016(162)- 120 minutes

ID#:___

NAME:_

Notation: \mathbb{R} = the real numbers, \mathbb{N} = the natural numbers, m = Lebesgue measure. Instructions: Work any three complete problems or any six different parts

(1) (a) For x ∈ (0, +∞), set f_n(x) = e^{sin(x²/n)}/(1+x) for each n ∈ N.
(i) Evaluate with proof lim_{n→∞} ∫₀ⁿ (f_n(x))²dx.
(ii) Evaluate with proof lim_{n→∞} ∫₀ⁿ f_n(x)dx.

(b) Let f and g be nonnegative integrable functions on [0, 1] with

$$\int_{0}^{1} f(x)dx = \int_{0}^{1} g(x)dx = 1.$$

Let $A = \{x \in [0,1] : f(x) \le 3\}$ and $B = \{x \in [0,1] : g(x) \le 3\}$. Show that $m(A \cap B) \ge \frac{1}{3}$.

- (2) Identify which of the following statements is true and which is false. If a statement is true, give reason. If a statement is false, provide a counterexample
 - (a) (i) Let (X, \mathcal{M}, μ) be a measure space and f be a measurable function, then $f = g \ a.e.$ implies g is measurable.
 - (ii) Suppose that $\{f_n\}_{n\in\mathbb{N}}$ is bounded in $L^1([0,1])$. Then $\{f_n\}_{n\in\mathbb{N}}$ is uniformly integrable over [0,1].
 - (b) If $f, g \in L^2(\mathbb{R})$, then $\lim_{t \to \infty} \int f(x)g(tx)dm = 0$.
 - 3(a) Let $\{E_n\}$ be a sequence of measurable subsets of [0, 1] and suppose that $m(E_n) \leq 1/n$. Show that if $f = \sum \chi_{E_n}/n$ and if $1 \leq p < \infty$ then $f \in L^p([0, 1])$.
 - (b) (i) Let $f \in BV([a, b])$. Show that if $f \ge c$ on [a, b] for some constant c > 0, then $\frac{1}{f} \in BV([a, b])$.
 - (ii) Let f be a real-valued function on [a, b] satisfying the Lipschitz condition on [a, b]. Show that f is absolutely continuous on [a, b].

- 4(a) Let μ and ν be finite signed measures. Define $\mu \wedge \nu = \frac{1}{2}(\mu + \nu |\mu \nu|)$. If μ and ν are positive measures, show that they are mutually singular if and only if $\mu \wedge \nu = 0$.
- (b) Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ be a sequence of real-valued measurable functions on X such that, for each natural number n, $\mu(\{x \in X : |f_n(x) f_{n+1}(x)| > 1/2^n\}) < 1/2^n$. Show that $\{f_n\}$ is pointwise convergent *a.e.* on X. (Hint: Use the Borel-Cantelli Lemma.)

Dr. M. R. Alfuraidan