King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 430 Final Exam – 2016–2017 (162)

Allowed Time: 180 minutes

Name:	
ID #:	
Section #:	Serial Number:

Instructions:

- 1. Write clearly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.

Problems:

Question $\#$	Grade	Maximum Points
1		9
2		7
3		10
4		12
5		10
6		10
7		20
8		18
Total:		96

Q:1 (2 + 4 + 3 points) (a) Find all solutions of the equation

$$z^8 - 2 z^4 + 1 = 0.$$

(b) Sketch the set of points in the complex plane satisfying the inequality $Im(\frac{1}{z}) > 1 \ (z \neq 0).$ (c) Find the value of i^{2i} .

Q:2 (3 + 4 points) (a) Find all roots of $\cosh(z) = \frac{1}{2}$. (b) Show that $|\sin(z)|^2 = \sin^2 x + \sinh^2 y$.

Q:3 (10 points) Evaluate $\int_C \text{Im}(z - i) \, dz$, where C is the polygonal path consisting of the circular arc along |z| = 1 from z = 1 to z = i and the line segment from from z = i to z = -1.

Q:4 (2 + 6 + 4 points) (a) State the maximum modulus principle.

(b) Let $f(z) = e^z$ and R be the rectangular region $0 \le x \le 1$ and $0 \le y \le \pi$. Find the points in R, where $v(x, y) = Im f(z) = e^x \sin(y)$ reaches its maximum and minimum values. (c) Use Cauchy's integral formula to evaluate

$$\int_{|z|=1} \frac{\cos(z)}{z(z^2+9)} \, dz,$$

Q:5 (10 points) Show that when 0 < |z - 1| < 2,

$$\frac{z}{(z-1)(z-3)} = -3 \sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}} - \frac{1}{2(z+1)}.$$

 ${\bf Q:6}$ (10 points) Use Cauchy's residue theorem to evaluate

$$\int_{|z|=2} \frac{\mathrm{d}z}{\sinh(2\,z)}.$$

Q:7 (8 + 8 + 4 points) (a) Let $|F(z)| \leq \frac{M}{R^k}$ for $z = Re^{i\theta}$, where k > 0 and M are constants. Prove that

$$\lim_{R\to\infty} \int_C e^{imz}F(z)dz = 0,$$

where C is the semicircular arc of radious R $(0 \le \theta \le \pi)$ and m is constant.

(b) Evaluate $\int_0^\infty \frac{dx}{(x^2 + 1)^2}$.

(c) Use Rouche's theorem to show that the polynomial $z^6 + 4z^2 - 1$ has exactly two zeros in the disk |z| = 1.

Cont.

Q:8 (6 + 2 + 10 points) (a) Determine where the complex mapping $w = z + \frac{1}{z}$ is conformal. Show that the mapping $w = z + \frac{1}{z}$ maps $|z| = \rho$ ($\rho \neq 1$) onto the ellipse. (b) Find the scale factor of $w = z^2$ at the point 2 + i. (c) Show that the transformation w = sin(z) is a one to one conformal mapping of the vertical

(c) Show that the transformation $w = \sin(z)$ is a one to one conformal mapping of the vertical strip $|x| < \frac{\pi}{2}$ onto the w-plane slit along the rays $u \le -1, v = 0$ and $u \ge 1, v = 0$.