King Fahd University of Petroleum & Minerals				
Department of Mathematics & Statistics				
Math 430 Exam 03				
The Second Semester of 2016-2017 (162)				

<u>Time Allowed</u>: 90 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Provide all necessary steps required in the solution.

Question $\#$	Marks	Maximum Marks
1		11
2		6
3		8
4		16
5		10
Total		51

Q1: (3 + 8 points) (a) State and prove Gauss's mean value theorem.

(b) Use Cauchy's integral formula(s) to evaluate

$$\int_C \frac{z^3+3}{z(z-i)^2} dz,$$

where C is the contour shown in the fig.

Q2: (6 points) Let C be the unit circle $z = e^{i\theta}$ $(-\pi \le \theta \le \pi)$. First show that for any real constant a, $\int_C \frac{e^{az}}{z} dz = 2\pi i$. Then write this integral in terms of θ to derive the integral formula

$$\int_0^{\pi} e^{a \cos(\theta)} \cos(a \sin\theta) d\theta = \pi.$$

Q3: (8 points) State and prove the fundamental theorem of algebra for any polynomial P(z) of degree $n(n \ge 1)$.

Q4: (4 + 4 + 4 + 4 points) Let $f(z) = (z^2 - 3z + 2)^{-1}$. Find the Laurent series for f(z) valid for

(a) 1 < |z| < 2 (b) |z| < 1 (c) |z| > 2 (d) 0 < |z - 1| < 1

Q5: (5 + 5 points) (a) Expand $f(z) = \frac{1}{1-z}$ in a Taylor series with center $z_0 = 2i$ and find the circle of convergence.

(b) Evaluate

$$\int_C \frac{1}{z^2 \sinh(z)} dz$$

where C is the positively oriented circle |z| = 1 and

$$\frac{1}{\sinh(z)} = \frac{1}{z} - \frac{1}{6}z + \frac{7}{360}z^3 + \dots \qquad (0 < |z| < \pi)$$