King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 430 Major Exam II The Second Semester of 2016-2017 (162)

Time Allowed: 90 Minutes

Name:	ID#:
Section:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Provide all necessary steps required in the solution.

Question $\#$	Marks	Maximum Marks
1		18
2		18
3		15
Total		51

(b) Verify that the function $u(x, y) = x y^3 - x^3 y$ is harmonic in the entire complex plane. Find a harmonic conjugate of u(x, y).

(c) State and prove **reflection** principle.

Q2: (6 + 6 + 6 points) (a) (i) Find all values of $(1 + i)^{(1-i)}$.

(ii) Solve the equation $\cos z = \sqrt{2}$.

(b) Find all roots of the equation $\cos(z) = \cosh 2$ by equating the real and imaginary parts of $\cos(z)$ and $\cosh 2$.

(c) Find all roots of the equation $\sinh(z) = i$.

Q3: (2 + 5 + 8 points) (a) Show that if w(t) = u(t) + i v(t) is continuous on $a \le t \le b$, then

$$\int_{a}^{b} w(t) dt = \int_{\alpha}^{\beta} w[\phi(\tau)] \phi'(\tau) d\tau,$$

where $\phi(\tau) = t, \alpha \le \tau \le \beta$.

(b) Find the **upper bound** of $\oint_C \frac{z+4}{z^3-1} dz$, where C is the circle |z| from z=2 to z=2i

(c) State the **Cauchy-Goursat theorem** and use it to evalute $\oint_C \frac{z+1}{z^2+2z-3}dz$, where C is the circle |z-2| = 2.