King Fahd University of Petroleum & Minerals			
Department of Mathematics & Statistics			
Math 430 Major Exam I			
The Second Semester of 2016-2017 (162)			

Time Allowed: 90 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Provide all necessary steps required in the solution.

Question $\#$	Marks	Maximum Marks
1		15
2		12
3		11
4		12
Total		50

- **1** (15 points) (a) Verify that $\sqrt{2} |z| \ge |Re z| + |Im z|$.
 - (b) Sketch the set of points determined by |z i| = Im z + 1.
 - (c) Express $\frac{1+i}{\sqrt{3}-i}$ in terms of rectangular and polar forms.
- (2) (12 points) (a) Show that the all values of $f(z) = \frac{z}{1-z^2}$ lies on the y-axis.

(b) If z is a complex number satisfying $|z|^2 - |z| - 2 < 0$, then find the value of $|z^2 + z \sin\theta|$ for all values of θ .

- (3) (11 points) (a) Find the roots of $(-16)^{\frac{1}{4}}$ and locate them graphically.
 - (b) Define " Domain and open set " in the complex plane.
 - (c) Is the set 0 < |z 2| < 3 a domain and open set? Give reason.
- (4) (12 points) (a) Use $\epsilon \delta$ definition to show that $\lim_{z \to 1} \frac{i \bar{z}}{2} = \frac{i}{2}$

(b) State the Cauchy-Riemann equations for a differentiable function f(z) at point z_0 .

(c) Let $f(z) = \frac{1}{z^2}$ $(z \neq 0)$. Use the Cauchy-Riemann equations in polar coordinates to find f'(z).