King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Sciences Math 425 - Graph Theory Semester – 162 Dr. M. Z. Abu-Sbeih

May 6, 2017

Student No.: _____.

Exam III

Name: _____

Show all your work. No credits for answers without justification. Write neatly and eligibly. You may loose points for messy work.

Problem 1 (18 points): Prove or disprove: (a) A transitive tournament is acyclic.

(b) Let v be a vertex of maximum out-degree in a tournament T of order n. Show that $\vec{d}(v, u) \le 2$ for all vertices $u \in V(G)$.

Problem 2 (27 points):

(a) Find the crossing number of the complete graph K_{10} and the complete bipartite graph $K_{7,10}$.

(b) Find the automorphism group of the graph G in the figure.

(c) Find the number of distinct labeling of the graph G in part (b) from a set of n labels.

Problem 3 (20 points): Consider the network in the following figure, where the first number on an edge e indicates the flow f(e) and the second number indicates the capacity c(e) of the edge. Find:

(a) the val(f) =

(b) the capacity of a minimum cut.

(c) Is the given flow maximal flow? Why?

Problem 4 (36 points):

(a) Prove that the size of a maximal outerplanar graph G of order $n \ge 3$ is equal to 2n - 3. Find the number of faces of G.

(b) Find all connected regular plane graphs with number of faces equal to the order of the graph.

- (c) State Euler's formula (identity) for connected planar graphs.
 - If a connected planar graph has order n and size m and no triangles, prove that $\leq 2n 4$.

(d) State Kuratowski's Theorem. Which of the following graphs is planar? $K_6 - e, K_{4,3}, Q_4$, the Petersen graph. Explain why.