King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Sciences Math 425 - Graph Theory Semester – 162		
Exam II	Dr. M. Z. Abu-Sbeih	April 18, 2017
Student No.:	Name:	

Show all your work. No credits for answers without justification. Write neatly and eligibly. You may loose points for messy work.

Problem 1 (14 points): Define each of the following

- (a) Nonseparable graph
- (b) Eccentricity
- (c) Center of a graph
- (d) Tournament
- (e) The Caley tree theorem
- (f) A caterpillar
- (g) A block in a graph

Problem 2 (26 points): Consider the graph *G* in the figure

- (a) Find all cut- vertices (if any exists).
- (b) Find all bridges of G (if any exists).
- (c) Draw all blocks of G.

- (d) Find the center of G.
- (e) Find the girth of G.
- (f) Find the radius of *G*.
- (g) Find the cycle rank of *G*.
- (h) Without finding the adjacency matrix $M = [m_{ij}]$ of G, find $m_{ij}^{(3)}$.

1) If G is a connected graph of order n and size m such that m = n - 1, then G is a tree.

2) Every nontrivial connected graph has at least two vertices which are not cut vertices.

Math 425 Sem 162

3) In a connected graph G, if every vertex has even degree, then the graph has no bridges.

4) If *G* is a graph of order *n* such that $\delta(G) \ge \frac{n-1}{2}$, then *G* is connected.

(a) Construct the labeled tree having the Prufer code: (3,3,1,6,2,2).

(b) Show that the two graphs in the figure are not isomorphic.

Math 425 Sem 162

Exam 1

(c) Prove that the score sequence s_i of a tournament of order n $(n \ge 3)$ satisfies the equation

$$\sum_{i=1}^{n} s_{i}^{2} = \sum_{i=1}^{n} (n-1-s_{i})^{2}.$$

(d) If G_1 and G_2 are regular graphs of degrees r_1 and r_2 respectively, then the Cartesian product $G_1 \times G_2$ is regular.