King Fahd University of Petroleum & Minerals **Department of Mathematics and Statistics** Math 421: Introduction to Topology Final Exam, Fall Semester 162 (180 minutes) Jawad Abuhlail _____ _____ _____

Q1. (30 points) Show that

- (a) compactness is a strong topological property.
- (b) every compact Hausdorff space is regular.
- (c) every metric space is normal.

Q2. (10 points) State whether true or false:

- (1) $\mathbb{R}^2_{\mathcal{U}}$ is compact
- (2) $\mathbb{R}^2_{\mathcal{U}}$ is normal (3) $\mathbb{R}^2_{\mathcal{L}}$ is regular
- (4) $\mathbb{R}_{\mathcal{L}}$ is metrizable
- (5) \mathbb{R}_{CF} is compact
- (6) $\mathbb{R}^n_{\mathcal{U}}$ is path-connected
- (7) $\mathbb{R}^{3}_{\mathcal{U}} \cong \mathbb{R}^{2}_{\mathcal{U}}$
- (8) $\mathbb{R}_{\mathcal{R}\mathcal{R}} \cong \mathbb{R}_{\mathcal{R}\mathcal{L}}$
- (9) $\mathbb{Q}_{\mathcal{U}}$ is connected
- (10) $\mathbb{R}_{\mathcal{R}\mathcal{R}}$ is compact.

Q3. (10 points) Show that if $f: (X, \tau) \to (Y, v)$ is continuous, with Y compact and Hausdorff, then

$$G_f := \{ (x, f(x)) \in X \times Y : x \in X \}$$

is closed in $X_{\tau} \times Y_{v}$.

Q4. (10 points) Show that a topological space (X, τ) is connected if and only if X is not the union of two non-empty separated sets.

Q5. (10 points) Show that every compact subset of $\mathbb{R}_{\mathcal{L}}$ is countable.

Q6. (30 points) Prove or disprove:

(a) $\mathbb{R}_{\mathcal{R}\mathcal{R}}$ is metrizable.

(b) If (X,τ) , (Y,v) are topological spaces, $\{A_{\lambda}\}_{\lambda\in\Lambda}$ is a collection of closed subsets of X such that $X = \bigcup A_{\lambda}$ and $f : X_{\tau} \to Y_{\upsilon}$ is a function such that $f: A_{\lambda} \to Y_{v}$ is continuous for each $\lambda \in \Lambda$, then $f: X_{\tau} \to Y_{v}$ is continuous.

(c) The unit circle (with the usual topology) is T_4 .

GOOD LUCK