King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics MATH411 - Advanced Calculus II Exam I – Semester 162

Exercise 1

Let *A* and *B* be two compact subsets of \mathbb{R}^n . Show that $A \times B$ is a compact subset of \mathbb{R}^{2n} .

- Let $f : \Omega \to \mathbb{R}^m$ be uniformly continuous on $\Omega \subset \mathbb{R}^n$. Show that
- (a) If (x_k) is a Cauchy sequence, then $(f(x_k))$ is a Cauchy sequence
- (b) If Ω is bounded, then $f(\Omega)$ is bounded.

Show that a function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous if and only if, for each *V* open subset of \mathbb{R}^m , $f^{-1}(V)$ is open in \mathbb{R}^n .

Determine whether the limit exists, and if it does find it

(a)
$$\lim_{(x,y)\to(1,1)} \frac{x-y^4}{x^3-y^4}$$

(b) $\lim_{(x,y)\to(0,0)} xy \log(x^2+y^2)$

Let $A \in \mathcal{M}_n(\mathbb{R})$ be a symmetric matrix. Define $q : \mathbb{R}^n \to \mathbb{R}$ by

$$q(x) =$$

Show that *q* is differentiable and find dq(x). (Hint: find q(x + th))

Let *S* be s nonempty subset of \mathbb{R}^n . The distance from the point $x \in \mathbb{R}^n$ to the set *S* is defined by

$$d(x, S) = \inf\{||x - y|| : y \in S\}$$

Show that

- (a) d(x,S) = 0 if and only if $x \in \overline{S}$.
- (b) $d(x,S) = d(x,\overline{S})$
- (c) $|d(x,S) d(y,S)| \le ||x y||$ for every $x, y \in \mathbb{R}^n$; consequently d(.,S) is uniformly continuous on \mathbb{R}^n .
- (d) If *S* is compact and $c \ge 0$, then $\{x \in \mathbb{R}^n : d(x, S) \le c\}$ is compact.
- (e) If *S* is compact, then there exists $y_0 \in S$ such that $d(x, S) = ||x y_0||$.