King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Syllabus of Math 301-Term 162 <u>Coordinator</u>: Dr. Jamal Al-Smail

Course: MATH 301

Title: Methods of Applied Mathematics

Textbook: Advanced Engineering Mathematics by Zill and Wright (Fifth Edition)

Week	Date	Sec.	Topics	Homework Problems				
1	Feb 05-09	9.1	Vector Functions	1, 12, 19, 21, 26, 34, 41				
		9.5	Directional Derivative	4, 6, 10, 14, 21, 24, 33				
2	Feb 12-16	9.7	Curl and Divergence	2, 10, 17, 20, 27				
		9.8	Line Integrals	2, 6, 11, 16, 19, 28, 33				
3	Feb 19-23	9.9	Independence of the Path	2, 10, 12, 18, 21, 26				
		9.12	Green's Theorem	2,4,6,9,18,23,25				
4	Feb 26-		Surface Integrals	2,5,10, 18, 22, 25, 33				
	Mar 02	9.14	Stokes' Theorem	1, 3, 6, 8, 13, 17				
5	Mar 05-09		Divergence Theorem	2, 4, 7, 11, 14				
		4.1	Definition of the Laplace transform	1, 5, 14, 26, 30, 37, 43				
Major Exam I: Date: March 9, Material: 9.1 – 9.16								
6	Mar 12-16	4.2	The Inverse Transform and Transforms of Derivatives	2,10, 19, 22, 24, 32, 35				
		4.3	Translation Theorems	2,8,13,20,24,31,37,48,55,63				
7	Mar 19-23	4.4	Additional Operational Properties	1,10,16,22,27,31,38,46				
		4.5	The Dirac Delta Function	1,4,8,12				
8	Mar 26-30		Orthogonal Functions	2,6,11,13				
		12.2	Fourier Series	1,6,12,17,20				
Mid-term Break: April 02-06								
9	Apr 09-13	12.3	Fourier Cosine and Sine Series	1,8,12,16,25,35,38				
10	Apr 16-20	12.5	Sturm-Liouville Theorem	2,4,6,12				
		Maj	jor Exam II: Date: April 18, Material: 4.1	-12.3				
11	Apr 23-27		Bessel and Legendre Series Separable Partial Differential Equations	2,4,6,8,15,20 2,8,12,16,22,26,27				
12	Apr 30-		Heat Equation	2,3,6				
	May 04	13.4		1,6,9,16,23				
13	May 07-11	13.5	Laplace's Equation	2,4,7,10,14				
			Problems in Cylindrical Coordinates	2,4,9,12				
14	May 14-18		Problems in Spherical Coordinates	2,5,11,12				
			Applications of the Laplace Transform	2,4, 10,14,18,24				
15	May 21-25		Fourier Transforms	1,6,10,12,16				
		Final	Exam :					

Instructor: M. Yousuf Office: Bldg. 5/403, Phone: 7196, Email: myousuf@kfupm.edu.sa

Office Hours:

Sunday	Monday	Tuesday	Wednesday	Thursday			
10:00 - 10:50		10:00 - 10:50		10:00 - 10:50			
Also by appointment							

Grading Policy:

Exam I	25%	Final Exam	35%
Exam II	25%	Class work	15%

<u>Attendance</u>: Attendance is compulsory. KFUPM policy with respect to attendance will be strictly enforced. Any student accumulating **9 unexcused absences** will be awarded a DN grade in the course.

Learning Outcomes: Upon completion of this course, students will be able to

- 1. Recognize the vector fields, find their curl and divergence, and test whether they are conservative.
- Evaluate the line integral along plane or space curves and the surface integral over surfaces in 3-space.
- 3. Use Green's, Stokes' and Divergence theorems to relate and evaluate different types of integral.
- 4. Evaluate the Laplace transform and inverse Laplace transform of a given function.
- 5. Apply the Laplace transform, inverse Laplace transform, and their operational properties to solve linear initial-value and boundary-value problems.
- 6. Find the Fourier series, the Fourier cosine and sine series, and the Bessel and Legendre series of a given function.
- 7. Find the eigenvalues and eigenfunctions for a given Sturm-Liouville boundary-value problem and state their orthogonality relation.
- 8. Solve separable partial differential equations.
- 9. Solve boundary-value problems involving the wave, heat and Laplace equations in various coordinate systems.
- 10. Evaluate the Fourier integral and the Fourier cosine and sine integrals of a given function.
- 11. Use the Fourier transform, inverse Fourier transform, and their operational properties to solve linear boundary-value problems