MATH 280-01 (162) HW # 6 and 7 Due on 9/5/2017

Q1. Let A be an $n \times n$ matrix such that $A^T A = I$. What is the rank of A? (Justify your answer)

Q2. Verify that the following is a linear operator on \mathbb{R}^3 and find a basis for its kernel:

$$L\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}3x-y+z\\y+2z\\3y+6z\end{bmatrix}$$

Q3. Let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a linear operator and suppose that $T \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} 1\\-2 \end{bmatrix}$ and $T \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} -2\\5 \end{bmatrix}$

Find the standard matrix representation of T.

Q4. Let $V = [1, x, x^2]$ and $U = [1, 1 + x, 1 + x + x^2]$ be two ordered bases for P_3 .

- (i) Find the transition matrix from V to U.
- (ii) Use the matrix obtained in (i) above to find the coordinates of $P(x) = 2 + 5x x^2$.

Q5. If A and B are similar $n \times n$ matrices, show that $(A^2 - 2A + I)$ and $(B^2 - 2B + I)$ are similar.

Q6. Let

$$A = \begin{bmatrix} 1 & 2 & 2 & 3 & 1 & 4 \\ 2 & 4 & 5 & 5 & 4 & 9 \\ 3 & 6 & 7 & 8 & 5 & 9 \end{bmatrix}$$

(i) Find a basis for the column space of A.

(ii) Find a basis for the Null space of A.

(ii) What is the rank of A?

Q7. Let $\mathbf{x} = (2, -5, 4)^T$ and $\mathbf{y} = (1, 2, -1)^T$. Find the vector projection \mathbf{p} of \mathbf{x} onto \mathbf{y} and verify that \mathbf{p} and $\mathbf{x} - \mathbf{p}$ are orthogonal.