King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics MATH 280-01(Term 162) **Final Exam** May 26, 2017

NAME:

ID #:

SHOW ALL WORK FOR FULL CREDIT

Question	Points	Score
1	10	
2	13	
3	13	
4	10	
5	13	
6	13	
7	10	
8	10	
9	10	
10	13	
11	10	
12	15	
Total	140	

- Q1. Let A be an $n \times n$ matrix. Fill in the following blanks:
 - a) If A is nonsingular and λ is an eigenvalue, then is an eigenvalue of A^{-1} .
 - b) If λ is an eigenvalue of A, then is an eigenvalue of A^T .
 - c) If λ is a complex eigenvalue of A, then is an eigenvalue of A.
 - d) If A is symmetric and λ is an eigenvalue, the λ is
 - e) If A is symmetric positive definite and λ is an eigenvalue, the λ is
 - f) If A is singular, then $\lambda = \dots$ is an eigenvalue of A.
 - g) If A has n distinct eigenvalues, then A is
 - h) The sum of all the eigenvalues of A is equal to \ldots
 - i) The product of all the eigenvalues of A is equal to \ldots
 - j) If B is similar to A and λ is an eigenvalue of A, then is an eigenvalue of B.

Q2. Diagonalize the following matrix:

$$A = \begin{bmatrix} -2 & 12\\ -1 & 5 \end{bmatrix}.$$

Q3. Show that if A is any $n \times n$ nonsingular matrix, then $A^T A$ is symmetric positive definite

Q4. Given the quadratic polynomial

$$f(x, y, z) = 2x^{2} - 2xy - 4xz + y^{2} + 2yz + 3z^{2} - 2x + 2z$$

Write f(x, y, z) in the form

$$f(x, y, z) = X^T A X + \mathbf{b}^T X$$

where $X = (x, y, z)^T$, A is a real symmetric matrix, and **b** is some constant vector.

Q5. Let **u** be a **unit** vector in \mathbb{R}^n and let $H = I - 2\mathbf{u}\mathbf{u}^T$. Show that H is both **orthogonal** and **symmetric**.

Q6. (a) Verify that the following defines an inner product on \mathbb{R}^3 :

$$\langle x, y \rangle = 3x_1y_1 + 2x_2y_2 + x_3y_3$$

where

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$$

(b) Consider the vectors

$$u = \begin{bmatrix} 1\\ a\\ -1 \end{bmatrix}, \ v = \begin{bmatrix} 3\\ 4\\ 1 \end{bmatrix}.$$

Find a such that the two vectors are orthogonal.

Q7. Given A and B in $\mathbb{R}^{2 \times 2}$ define

$$\langle A, B \rangle = tr(AB)$$

where tr is the trace of a matrix. Is this a valid inner product (explain)?.

Q8. Suppose A is an $m \times n$ matrix whose columns are linearly independent. What is the nullity of A (explain)?

Q9. For each $f \in C[0, 1]$ define

$$T(f) = \begin{bmatrix} f(0) \\ f(1) + 1 \end{bmatrix}$$

Is T(f) a linear transformation from C[0, 1] into \mathbb{R}^2 ?

Q10. Consider the function $F : \mathbb{P}_3 \longrightarrow \mathbb{R}^3$ that maps a polynomial in \mathbb{P}_3 to the vector

$$\begin{bmatrix} p(3) \\ p'(3) \\ p''(3) \end{bmatrix}$$

- (a) Show that F is a linear transformation.
- (b) Find the standard matrix representation of F.

Q11. Determine whether the following vectors are linearly independent in \mathbb{P}_3 :

 $x+2, x+1, x^2-1$

Q12. Given the basis

$$\left\{ \begin{bmatrix} 1\\2\\-2 \end{bmatrix}, \begin{bmatrix} 4\\3\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\}$$

for \mathbb{R}^3 , use the Gram-Schmidt process to obtain an orthonormal basis.