Serial #:
3

1. Give an example of 3 subsets A, B, C of \mathbb{N} such that $|A \cap B| = 0$, $|B \cap C| = 1$, $|C \cap A| = 2$.

Solution. Take for example $A = \{1, 2\}, B = \{3\}, C = \{1, 2, 3\}.$

2. For statements P and Q, which of the following is a tautology? Justify.

 $\mathbf{a} \ (P \lor Q) \Rightarrow (P \land Q)$

 $\mathbf{b} \ P \Rightarrow (P \Rightarrow Q)$

Solution. We have (at least) 3 ways of solving this.

For convenience, let A be the statement $(P \lor Q) \Rightarrow (P \land Q)$ and B be the statement $P \Rightarrow (P \Rightarrow Q)$.

(i) Using a Truth Table:

P	Q	$P \lor Q$	$P \wedge Q$	A	$P \Rightarrow Q$	B
T	Ť	T	T	T	T	T
T	F	T	F	F	F	F
F	T	T	F	F	T	T
F	F	F	F	T	T	T

Since neither A nor B is always True, we infer that none of them is a Tautology.

(ii) Using properties of Logical Equivalence:

 \mathbf{a}

$$\begin{split} A &\equiv \sim (P \lor Q) \lor (P \land Q) \equiv ((\sim P) \land (\sim Q)) \lor (P \land Q) \\ &\equiv ((\sim P) \lor (P \land Q)) \land ((\sim Q) \lor (P \land Q)) \\ &\equiv ((\sim P) \lor P) \land ((\sim P) \lor Q) \land ((\sim Q) \lor P) \land ((\sim Q) \lor Q) \\ &\equiv ((\sim P) \lor Q) \land ((\sim Q) \lor P) \text{ (because } (\sim P) \lor P \text{ and } ((\sim Q) \lor Q) \text{ are always True)} \\ &\equiv P \Leftrightarrow Q, \text{ and this is not a Tautology (e.g. take P True and Q False).} \end{split}$$

 \mathbf{b}

$$B \equiv (\sim P) \lor ((\sim P) \lor Q)$$

$$\equiv ((\sim P) \lor (\sim P)) \lor Q \equiv (\sim P) \lor Q$$

$$\equiv P \Rightarrow Q \text{ which is not a Tautology (e.g. take P True and Q False).}$$

(iii) By inspection:

a If we take P True and Q False, then $P \lor Q$ is True and $P \land Q$ is False, hence A is False and therefore it is not a Tautology.

b If we take P True and Q False, then $P \Rightarrow Q$ is False, hence B is False and therefore it is not a Tautology.

3. Let $S = \{3, 5\}$. Consider the quantified statement: For every $x \in S$ and $y \in S$, xy - 2 is prime.

a Is this quantified statement True or False? Justify.

b Write down (in symbols or in words) the negation of the quantified statement.

Solution.

a If (x, y) = (3, 3), then xy - 2 = 7; if (x, y) = (3, 5) (or (5, 3)), then xy - 2 = 13; and if (x, y) = (5, 5), then xy - 2 = 23. Since 7, 13, 23 are prime, we infer that the quantified statement is True.

b In words: There exist $x \in S$ and $y \in S$ such that xy - 2 is not prime. (Or, "xy - 2 is not prime for some x and y in S.")

[In symbols: $\exists (x, y) \in S \times S$, such that xy - 2 is not prime.]

- 4. Let x and y be integers. Prove that if xy and x + y are even, then both x and y are even.
 - Direct proof: Suppose xy and x + y are even, then there exist integers m, n such that xy = 2m and x + y = 2n. This means (x + 1)(y + 1) = xy + x + y + 1 = 2m + 2n + 1 = 2(m + n) + 1, which is odd (since $m + n \in \mathbb{Z}$). Hence x + 1 and y + 1 are both odd, i.e. x and y are even. \Box
 - Proof by contrapositive: Assume not both of x and y are even, i.e. assume that x or y is odd. W.L.O.G., we can assume that x is odd, i.e. x = 2m + 1 for some integer m. We have 2 cases:

Case 1. y is even. Let y = 2n (some n in Z). Then x + y = (2m + 1) + 2n = 2(m + n) + 1, which is odd (since $m + n \in \mathbb{Z}$). Hence not both xy and x + y are even.

Case 2. y is odd. Let y = 2n + 1 $(n \in \mathbb{Z})$. Then xy = (2m+1)(2n+1) = 2(2mn+m+n) + 1, which is odd (since $2mn + m + n \in \mathbb{Z}$). Hence not both xy and x + y are even.

• Another proof by contrapositive (without cases): Assume not both of x and y are even, i.e. assume that x or y is odd. W.L.O.G., we can assume that x is odd, i.e. x = 2m + 1 for some integer m. Then xy + (x + y) = (x + 1)y + x = (2m + 2)y + 2m + 1 = 2(my + m + y) + 1, which is odd (since $my + m + y \in \mathbb{Z}$). Since the sum of xy and (x + y) is odd, they cannot have the same parity, and therefore one of them must be odd. \Box