KFUPM/ Department of Mathematics & Statistics/ 162/ MATH 232/ Exam 2

Name:

ID #:

Serial #:

1. [6pts] Prove that there are no positive integers a, n such that $a^2 + 2 = 2^n$.

Proof. Suppose to the contrary that there are positive integers a, n such that $a^2 + 2 = 2^n$. Since $n \ge 1$, we obtain that 2^n is even, and hence $2^n - 2$, i.e. a^2 , is even. This means a is even. Put a = 2k where k is a positive integer.

We have $4k^2 = 2^n - 2$ which gives $2k^2 + 1 = 2^n$. In this last equation, the LHS is odd but the RHS is even (as $n \ge 1$), and this is impossible.

2. [6pts] Show that the following statements are false.

(i) If a and b are positive irrational numbers, then a + b is irrational.

(ii) If a and b are positive irrational numbers, then $a^2 + b$ is irrational.

[You may use the fact that $\sqrt{2}$ is irrational.]

Solution. Let $a = 2 - \sqrt{2}$, $b = \sqrt{2}$. Then b is irrational and also a is irrational (because if a were rational then so too would be 2-a, and this would mean $\sqrt{2}$ is rational). Clearly a and b are positive. We have:

(i) a + b is rational (a + b = 2), which shows that the statement (i) is false.

(ii) 4b is irrational (otherwise b would be rational) and $a^2 + 4b$ is rational since $a^2 + 4b = (2 - \sqrt{2})^2 + 4\sqrt{2} = 6$. This shows that (ii) is false.

3. [8pts] Prove by induction that the following statement is true for every integer $n \ge 2$

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}$$

Proof. Let P(n) be the statement above.

Base step: $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} > \sqrt{2} \Leftrightarrow \frac{\sqrt{2}+1}{\sqrt{2}} > \sqrt{2} \Leftrightarrow \frac{\sqrt{2}-1}{\sqrt{2}} > 0$, which is true. Hence P(2) is true.

Inductive step: Suppose P(k) is true for some integer $k \ge 2$. We prove that P(k+1) is true, i.e. that $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k+1}} > \sqrt{k+1}$.

We have $\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k+1}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \sqrt{k} + \frac{1}{\sqrt{k+1}}$. If we prove that $\sqrt{k} + \frac{1}{\sqrt{k+1}} \ge \sqrt{k+1}$, then we are done. We have $\left(\sqrt{k} + \frac{1}{\sqrt{k+1}}\right)\sqrt{k+1} = \sqrt{k^2 + k} + 1 \ge k + 1$ (because $k^2 + k \ge k^2$). Hence $\sqrt{k} + \frac{1}{\sqrt{k+1}} \ge \frac{k+1}{\sqrt{k+1}} = \sqrt{k+1}$, as required.

4. [8pts] Let F_1, F_2, \ldots be the sequence of integers defined recursively by:

$$F_1 = 1, F_2 = 1, F_n = F_{n-1} + F_{n-2} \ (n \ge 3)$$

Prove by induction the following statement.

$$F_1 + F_2 + \dots + F_n = F_{n+2} - 1$$
 for all $n \in \mathbb{N}$.

Proof. Let P(n) be the above statement.

Base step: We have $F_3 = F_1 + F_2 = 2$, hence $F_1 = 1 = F_3 - 1$ and so P(1) is true.

Inductive step: Assume that P(k) is true for some $k \in \mathbb{N}$. We prove that P(k+1) is true, i.e. that $F_1 + F_2 + \cdots + F_{k+1} = F_{k+3} - 1$.

We have $F_1 + F_2 + \cdots + F_{k+1} = F_1 + F_2 + \cdots + F_k + F_{k+1} = F_{k+2} + F_{k+1} - 1 = F_{k+3} - 1$ (using the recursive definition of the sequence F_1, F_2, \ldots), as required.

5. [6pts] Let R be a relation on a set A. Which of the following statements is TRUE? Either prove or give a counterexample to justify your answer.

(i) $R = (R^{-1})^{-1}$.

(ii) $R \cup R^{-1}$ is reflexive.

(iii) If R is transitive, then R^{-1} is also transitive.

Solution. (i) True: Let $a, b \in A$. Then $(a, b) \in R \Leftrightarrow (b, a) \in R^{-1} \Leftrightarrow (a, b) \in (R^{-1})^{-1}$. This proves that $R \subseteq (R^{-1})^{-1}$ and $(R^{-1})^{-1} \subseteq R$, i.e. that $R = (R^{-1})^{-1}$.

(ii) False: Let $A = \{0, 1\}$ (as a subset of \mathbb{Z}) and $R = \{(0, 1)\}$. Then $R \cup R^{-1} = \{(0, 1), (1, 0)\}$. Since $(0, 0) \notin R \cup R^{-1}$, the relation $R \cup R^{-1}$ is not reflexive.

[We could more simply just take R to be the empty relation \emptyset , then $R \cup R^{-1} = \emptyset$ which is not reflexive.]

(iii) True: Let $a, b, c \in A$ be such that $(a, b) \in R^{-1}$ and $(b, c) \in R^{-1}$. Then (b, a) and (c, b) are in R, and as R is transitive, (c, a) is also in R. Hence $(a, c) \in R^{-1}$, as required.

6. [6pts] Let S be the relation on \mathbb{R} defined by xSy iff $xy \ge 0$.

(i) Is S reflexive?

(ii) Is S symmetric?

(iii) Is S transitive?

Justify your answers.

Solution. (i) Let x be a real number. Then $x^2 \ge 0$, hence xSx and therefore S is reflexive.

(ii) Let x, y be real numbers such that xSy. Then $xy \ge 0$ and hence $yx \ge 0$ (since xy = yx). Therefore ySx, i.e. S is symmetric.

(iii) Let x = 1, y = 0, z = -1. Then xSy and ySz (because xy = yz = 0), but $xz = -1 \ge 0$, i.e $(x, z) \notin S$. Hence S is not transitive.