Name:

ID #:

1. [6pts] Let $A = \{1, 2, 3, 4\}$. Give an example of two sets S and B such that: $S \subseteq P(A)$, $|S| = 3, B \in S, and |B| = 2$.

Solution. We can take $B = \{1, 2\}, S = \{\emptyset, \{1\}, B\}$.

2. [6pts] Let P, Q, R be statements. Show that the statements $(P \lor Q) \Rightarrow (\sim R)$ and $R \Rightarrow ((\sim P) \land (\sim Q))$ are logically equivalent.

Proof. We can use a Truth Table. We can also use properties of logical equivalence, as follows. $(P \lor Q) \Rightarrow (\sim R) \equiv (\sim (P \lor Q)) \lor (\sim R)$ $R \Rightarrow ((\sim P) \land (\sim Q)) \equiv (\sim R) \lor ((\sim P) \land (\sim Q))$ $(\sim R) \lor (\sim (P \lor Q))$ (by De Morgan's law)

Since $(\sim (P \lor Q)) \lor (\sim R) \equiv (\sim R) \lor (\sim (P \lor Q))$, we obtain that $(P \lor Q) \Rightarrow (\sim R)$ and $R \Rightarrow ((\sim P) \land (\sim Q))$ are logically equivalent.

3. [8pts] (i) Let a and b be real numbers. Prove that either $\frac{a+b}{2} \ge a$ or $\frac{a+b}{2} > b$.

Proof. We have: Either $a \le b$, and then $a + b \ge 2a$, so that $\frac{a+b}{2} \ge a$; or a > b, and then a + b > 2b, so that $\frac{a+b}{2} > b$.

(ii) Let a and b be positive real numbers. Prove that if $a \neq b$, then $\frac{a}{b} + \frac{b}{a} > 2$.

Proof. Suppose $a \neq b$. We have $\frac{a}{b} + \frac{b}{a} - 2 = \frac{a^2 - 2ab + b^2}{ab} = \frac{(a-b)^2}{ab}$. Since $a \neq b$ we obtain that $(a-b)^2 > 0$, and since a and b are both positive, we obtain that ab is positive. Hence $\frac{(a-b)^2}{ab} > 0$, i.e. $\frac{a}{b} + \frac{b}{a} - 2 > 0$. This shows that $\frac{a}{b} + \frac{b}{a} > 2$.

4. [6pts] Prove by cases that if x is a real number such that $x^2 - x - 6 < 0$, then -2 < x < 3.

Proof. We have $x^2 - x - 6 = (x + 2)(x - 3)$. Suppose $x^2 - x - 6 < 0$. Then (x + 2) and (x - 3) have opposite signs. Case x + 2 > 0 and x - 3 < 0. In this case -2 < x < 3. Case x + 2 < 0 and x - 3 > 0. In this case x < -2 and x > 3, which is impossible. The only possibility therefore is that -2 < x < 3. 5. [6pts] (i) A perfect square is divided by 5. What are all the possible remainders?

Solution. Let x be an arbitrary integer. Then x is congruent to 0 or ± 1 or ± 2 modulo 5, and hence x^2 is congruent to 0 or 1 or 4 modulo 5. The possible remainders are therefore 0 or 1.

(ii) Prove that if $a \in \mathbb{Z}$, then $5 \nmid (a^2 + 2)$.

Proof. Assume to the contrary that $5 \mid (a^2 + 2)$ for some integer *a*. Then $a^2 + 2 \equiv 0 \pmod{5}$, and hence $a^2 \equiv 3 \pmod{5}$, which contradicts the fact we obtained in Part (i) that the only possible remainders when a perfect square is divided by 5 are 0 or 1 or 4.

We conclude that $5 \nmid (a^2 + 2)$.

6. [8pts] Let A, B, and C be sets.

(i) Prove that $A \cup B \subseteq A \cap B$ if and only if A = B.

Solution. Suppose that $A \cup B \subseteq A \cap B$. Then $A \subseteq A \cup B \subseteq A \cap B \subseteq B$. Similarly, $B \subseteq A$. Hence A = B. For the converse, it is clear that if A = B, then $A \cup B = A = A \cap B$, and so $A \cup B \subseteq A \cap B$.

(ii) Prove that if A = B then $A \times C = B \times C$. Is the converse true? Justify.

Proof. Suppose A = B.

To prove $A \times C = B \times C$, we need only prove that $A \times C \subseteq B \times C$ (the proof of the reverse inclusion $B \times C \subseteq A \times C$ is similar).

Let $(x, y) \in A \times C$, then $x \in A$ and $y \in C$. Since A = B, we obtain $x \in B$. Hence $(x, y) \in B \times C$, as required.

The converse is: If $A \times C = B \times C$ then A = B. This is false: Take for example $A = C = \emptyset$ and $B = \mathbb{N}$. Then $A \times C = B \times C = \emptyset$, but $A \neq B$.