ID #:	Name:	Quiz 5 (MATH 202)	Serial:
Q1. If $y = \sum_{n=0}^{\infty} c_n x$	x^n is a power series solution of the L	DE $(1-x^2)y'' - 2xy' + 4y = 0$ about the	the ordinary point $x = 0$,
find the rec	surrence relation that determines c_n .		

Q.2. (i) Find the indicial equation (without solving the LDE) of the LDE: $xy'' - (3 - 2x^2)y' - \frac{5}{x}y = 0$ about the regular singular point x = 0, and find its roots.

(ii) Considering the roots in (i), state the nature of both series solutions of the above LDE .

Q.3 (i) Find the singular points of the LDE: $x^{3}(x^{2}-25)^{2}y''+3x^{2}(x+5)y'+7y=0$.

(ii) Classify each singular point obtained in (i) as regular or irregular. (Show all steps)

Q.4. Setting $y = \sum_{n=0}^{\infty} c_n x^n$ in the LDE $y'' - xy' - x^2 y = 0$ gives us $2c_2 + 6c_3 x - c_1 x + \sum_{k=2}^{\infty} [(k+1)(k-1)c_k + (k+2)(k-1)c_{k+2}]x^k = 0$. Find One Power Series solution of the LDE about the Ordinary Point x = 0.

ID #	: Name:	Quiz 5 (MATH 202)	Serial:		
Q.1. If $y = \sum_{n=0}^{\infty} c_n x^n$ is a power series solution of the LDE $y'' - xy' - x^2 y = 0$ about the ordinary point $x = 0$,					
	find the recurrence relation and other relations	that determine all c_n 's.			

(ii) Classify each singular point obtained in (i) as regular or irregular. (Show all steps)

Q.2. (i) Find the singular points of the LDE: $x^{3}(x-4)(x-2)^{2}y'' + 3x(x-2)y' + 7(x-4)y = 0$.

Q.3. Find the radius of convergence of a power series solution of the LDE about its ordinary point x = 4: $(x-2)(x^2+9)y'' + xy' - y = 0$

Q.4. Setting
$$y = \sum_{n=0}^{\infty} c_n x^{n+r}$$
 in the LDE $2xy'' + (1+x)y' + y = 0$ gives us

$$x^r \left[r(2r-1)c_0 x^{-1} + \sum_{k=0}^{\infty} [(k+r+1)(2k+2r+1)c_{k+1} + (k+r+1)c_k] x^k \right] = 0.$$

- (i) Find the Indical Equation and its roots:
- (ii) Find the Recurrence Relation:
- (iii) Find the Frobenius solution for the larger root of indicial equation.