King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics			Spring Semester (Term 162)		
Quiz 4	Calcu	Calculus III		Dr. Taleb Alkurdi	
Name	ID				
I mportant Note: Please for the final answer and	show your work in or the rest will be for the	der to get the full g e details of the wor	grade. There is only k.	v one point	
MULTIPLE CHOICE. Choose	the one alternative that best	completes the statemer	nt or answers the questio	n.	
Evaluate the integral. 1) $\int_{1}^{e^2} \int_{1}^{e^9} \int_{1}^{e^{10}} \frac{1}{xy^2}$ A) 360	dx dy dz B) 60	C) 180	D) 540	1)	
Find the volume of the indicate 2) the region bounded a A) $\frac{1000}{3}\pi(2 - \sqrt{3})$	ed region. bove by the sphere $x^2 + y^2 + B$) $\frac{1000}{3}\pi(2 - \sqrt{2})$	$z^2 = 100$ and below by t C) 250 π (2 - $\sqrt{2}$)	the cone z = $\sqrt{x^2 + y^2}$ D) 250 π (2 - $\sqrt{3}$)	2)	
Solve the problem. 3) Write an iterated trip paraboloids $z = 32 - x^2$ A) $\int_{-4}^{4} \int_{-\sqrt{32 - x^2}}^{\sqrt{32 - x^2}}$ B) $\int_{-4}^{4} \int_{-\sqrt{32 - x^2}}^{\sqrt{32 - x^2}}$	le integral in the order dz dy $x^2 - y^2$ and $z = x^2 + y^2$. $\int_{x^2 + y^2}^{32 - x^2 - y^2} dz dy dx$ $x^2 + y^2$ $\int_{x^2 + y^2}^{16 - x^2 - y^2} dz dy dx$ $x^2 + y^2$	dx for the volume of the	e region enclosed by the	3)	

C) $\int_{-4}^{4} \int_{-\sqrt{16 - x^{2}}}^{\sqrt{16 - x^{2}}} \int_{x^{2} + y^{2}}^{16 - x^{2} - y^{2}} dz dy dx$ D) $\int_{-4}^{4} \int_{-\sqrt{16 - x^{2}}}^{\sqrt{16 - x^{2}}} \int_{x^{2} + y^{2}}^{32 - x^{2} - y^{2}} dz dy dx$ Change the Cartesian integral to an equivalent polar integral, and then evaluate.

4)
$$\int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt{9-x^{2}}} \frac{1}{(1+x^{2}+y^{2})^{2}} \, dy \, dx$$

A)
$$\frac{18}{5}\pi \qquad B) \frac{9}{10}\pi \qquad C) \frac{9}{5}\pi \qquad D) \frac{9}{19}\pi$$

Solve the problem.

5) Let D be the region bounded below by the xy-plane, above by the sphere $x^2 + y^2 + z^2 = 100$, and on 5) the sides by the cylinder $x^2 + y^2 = 64$. Set up the triple integral in cylindrical coordinates that gives the volume of D using the order of integration d θ dz dr.

4)

A)
$$\int_{0}^{2\pi} \int_{0}^{\sqrt{100 - r^2}} \int_{0}^{8} r \, d\theta \, dz \, dr$$

B) $\int_{0}^{10} \int_{0}^{\sqrt{64 - r^2}} \int_{0}^{2\pi} r \, d\theta \, dz \, dr$
C) $\int_{0}^{2\pi} \int_{0}^{\sqrt{100 - r^2}} \int_{0}^{10} r \, d\theta \, dz \, dr$
D) $\int_{0}^{8} \int_{0}^{\sqrt{100 - r^2}} \int_{0}^{2\pi} r \, d\theta \, dz \, dr$