King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics		Spring Semester (Term 162)
Quiz 3	Calculus III	Dr. Taleb Alkurdi
Name	ID	Serial Number
•	now your work in order to get the ful he rest will be for the details of the w	5 5 1
MULTIPLE CHOICE. Choose the	one alternative that best completes the statem	nent or answers the question.
1) f(x, y) = 4x + 6y on the A) Absolute maximu B) Absolute maximu C) Absolute maximu	nima of the function on the given domain. closed triangular region with vertices (0, 0), (1, n: 4 at (1, 0); absolute minimum: 0 at (0, 0) n: 6 at (0, 1); absolute minimum: 0 at (0, 0) n: 6 at (0, 1); absolute minimum: 4 at (1, 0) n: 10 at (1, 1); absolute minimum: 4 at (1, 0)	0), and (0, 1) 1)
Find all local extreme values of th	e given function and identify each as a local m	naximum, local minimum, or saddle point.
	inimum	2)
3) f(x, y, z) = x + 2y - 2z, A) Maximum: 1 at (- B) Maximum: 9 at (1 C) Maximum: 1 at (1	Action subject to the given constraint. $x^2 + y^2 + z^2 = 9$ 1, -2, -3); minimum: -1 at (1, 2, 3) , 2, -2); minimum: -9 at (-1, -2, 2) , -2, -2); minimum: -1 at (-1, 2, 2) , 1, -2); minimum: -8 at (-2, -1, 2)	3)