1) Determine whether the series is convergent or divergent. (State the conditions & the name of the test that you will use)

a.	~~	3 <i>n</i>	- 4
		2	_

b.	7 8	1	$+\cos n$
	4	e ⁿ	

$$\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$$

2) Find the values of p for which the series is convergent

$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{n}}$$

1) Determine whether the series is convergent or divergent. (State the conditions & the name of the test that you will use)

a.	~	1	
	n-2	$n \ln n$	

b.
$$\sum_{k=1}^{\infty} \frac{k \sin^2 k}{1 + k^3}$$

$$\sum_{n=1}^{\infty} \ln \frac{n}{n+1}$$

2) Find the values of p for which the series is convergent

$$\sum_{n=1}^{\infty} n(1+n^2)^p$$