King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics Math 101 (17) Class Test III Spring 2017 (162)

ID#:	NAME:
Serial#	

1. Which of the following statements is TRUE:

- a) If f is a differentiable and positive function, then $\frac{d}{dx}[\sqrt{f(x)}] = \frac{f'(x)}{2\sqrt{f(x)}}$
- b) If $y = \sin^2 x$, then $y'' = 2 \sin x \cos x$
- c) If $y = e^2$, then y' = 2e
- d) $\frac{d}{dx} \ln(10) = \frac{1}{10}$

e)
$$\frac{d}{dx}(|x^2 + x|) = |2x + 1|$$

2. If
$$y = \frac{4 \sin x}{2x + \cos x}$$
, then $y' =$

3.
$$\lim_{h\to 0} \frac{\sin(2x+h) - \sin(2x)}{h} =$$

4. A particle with position function $s(t) = t^3 - 3t^2 - 9t$, $t \in [0, 7]$, moves in the positive direction when $t \in (a, b)$. Then a + b =

- 5. An equation of the tangent line to the curve $y = \frac{\ln x}{x}$ at (1,0) is
- 6. The slope of the tangent line to the curve $x^2 + x^2y^2 + \tan^{-1}y = 1$ at the point (-1,0) is

7. If
$$h(2) = 4$$
 and $h'(2) = -3$, then $\frac{d}{dx} \left(\frac{h(x)}{x} \right) \Big|_{x=2}$ is equal to:

8.
$$\lim_{x \to \pi} \frac{\sin(\sin x)}{\tan x} =$$

- 9. Let $f(x) = x^n e^x$, where n is a positive integer. Then, $f^{(n)}(x)$ at x = 0 is
- 10. If f(x) = x g(x), where f and g are differentiable functions, f(2) = -6, and f'(2) = -5. The equation of the normal line to the curve y = g(x) at x = 2 is

11. Given that
$$y = \frac{e^x \cos(\pi x)}{\sqrt{x}} + e^x$$
, then $y'(1) =$

12. If $f(t) = g(t g(t^2))$ such that

t	2	4	8	
g(t)	2	4	3	,
g'(t)	1	2	2	

then
$$f'(2) =$$

13.
$$\frac{d}{dx} \left[\lim_{n \to \infty} \left(1 + \frac{x}{5n} \right)^n \right] =$$

14. Let
$$g(x) = \begin{cases} \sqrt{x} e^x \text{ when } x \ge 0 \\ \log_3(-x) \text{ when } x < 0 \end{cases}$$
. The value of $g'(1) + g'\left(\frac{-1}{\ln 3}\right)$ equals to

15. Let $f(x) = c x^2 + c \ln(|\cos x|) + 3$, where c is some constant. The value of c making $f'(\pi) = \frac{3\pi}{2}$ is

16. If
$$f(x) = 5x + 3e^{7x}$$
, then $(f^{-1})'(3) =$

17. A glass window has a shape of square with a semicircle on its top. Suppose that the area of the square is changing at the rate of $\frac{2}{\pi} \, \mathrm{cm}^2/\mathrm{min}$. Then the area of the semicircle will be changing at the rate of $R \, \mathrm{cm}^2/\mathrm{min}$ where R=

18. If
$$y = x \sin^{-1} x + \sqrt{1 - x^2}$$
, then $\frac{dy}{dx}$ at $x = 1$ equals to

19. If
$$f(x) = (\pi x)^{ex}$$
, then $f'\left(\frac{1}{\pi}\right) =$

$$20. \ \frac{d^{19}}{dx^{19}} \left(x \sin x \right) =$$