King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 101
Exam II
Term 162
Wednesday 19/4/2017
Net Time Allowed: 120 minutes

MASTER VERSION

- 1. The position of a particle along a straight line is given by $S(t)=t\,e^{-t/2}$ in the time interval [0,5] seconds. The particle is slowing down when
 - (a) 0 < t < 2 and 4 < t < 5
 - (b) 0 < t < 3 and 4 < t < 5
 - (c) 0 < t < 2 and 3 < t < 5
 - (d) 2 < t < 4
 - (e) 2 < t < 5

- 2. If $g(x) = (f(x^3))^2$ and $f(8) = \frac{1}{4}$, f'(8) = 2, then g'(2) =
 - (a) 12
 - (b) 24
 - (c) 1
 - (d) 48
 - (e) 36

- $3. \quad \lim_{\theta \to 0} \left(\frac{2\sin \theta}{\theta + \tan \theta} \right) =$
 - (a) 1
 - (b) 2
 - (c) 4
 - (d) ∞
 - (e) 0

- 4. An equation of the tangent line to the curve $y = x^2 \ln x$ at (1,0) is
 - (a) y = x 1
 - (b) y = x + 1
 - (c) y = x + 2
 - $(d) \quad y = x 2$
 - (e) $y = \frac{x}{2} \frac{1}{2}$

- 5. If $y = (2x + 1)^{\sec x}$, then y'(0) =
 - (a) 2
 - (b) 1
 - (c) -1
 - (d) 0
 - (e) ln 2

- 6. If f and g are the functions whose graphs are shown below, and let h(x) = f(g(x)). Then h'(1) + h'(2) =
 - (a) 4
 - (b) 6
 - (c) -2
 - (d) 0
 - (e) -6

- 7. A particle is moving along the hyperbola xy = 16. As it reaches the point (8,2), the y-coordinate is decreasing at a rate of $3 \, cm/s$. How fast is the x-coordinate of the point changing at that instant?
 - (a) $12 \, cm/s$
 - (b) $-12 \, cm/s$
 - (c) $-6 \, cm/s$
 - (d) $6 \, cm/s$
 - (e) $0 \, cm/s$

- 8. The curve $y = e^x + x^3 + 5x^7$ has
 - (a) no horizontal tangent line
 - (b) two horizontal tangent lines
 - (c) one horizontal tangent line
 - (d) one vertical tangent line
 - (e) two vertical tangent lines

- 9. If $x^4 + y^4 = 16$, then y'' =
 - (a) $\frac{-48x^2}{y^7}$
 - (b) $\frac{-3x(x^3+y^3)}{y^7}$
 - (c) $\frac{16}{y^6}$
 - (d) $\frac{3x^2y^3 3x^3y^2}{y^6}$
 - (e) $\frac{3x^2y^3 + 3x^3y^2}{y^6}$

- 10. The position of a particle is given by the equation $s(t) = \cos\left(\frac{\pi}{4}t\right)$, $0 \le t \le 10$, where t is measured in seconds and s in feet. The total distance traveled by the particle during the first 8 seconds is
 - (a) 4 ft
 - (b) 8 ft
 - (c) 6 ft
 - (d) 2 ft
 - (e) 10 ft

- 11. $\frac{d}{dx} \left[\tan^{-1}(\cot x) \right] =$
 - (a) -1
 - (b) $\frac{-1}{\csc^2 x}$
 - (c) 0
 - (d) $-\tan^{-2}(\cot x)(\csc x \cot x)$
 - (e) $\csc^2 x$

$$12. \qquad \lim_{x \to \infty} \left(1 + \frac{5}{3x} \right)^x =$$

- (a) $e^{5/3}$
- (b) $e^{3/5}$
- (c) 1
- (d) 5
- (e) 0

13. The equation of the normal line to the graph of the curve $y = \frac{1 + \sin x}{x + \cos x}$ at $\left(\pi, \frac{1}{\pi - 1}\right)$ is

(a)
$$y = \frac{(\pi - 1)^2}{\pi} (x - \pi) + \frac{1}{\pi - 1}$$

(b)
$$y = \frac{\pi}{(\pi - 1)^2} (x - \pi) + \frac{1}{\pi - 1}$$

(c)
$$y = (\pi - 1)^2 (x - \pi) + \pi$$

(d)
$$y = -(\pi - 1)^2(x - \pi) + \frac{1}{\pi - 1}$$

(e)
$$y = -\frac{1}{(\pi - 1)^2} (x - \pi) + \frac{1}{\pi - 1}$$

- 14. If $f(x) = \cos(x)$, then $f^{(42)}(0) =$
 - (a) -1
 - (b) 0
 - (c) -42
 - (d) (42)!
 - (e) 1

15. Which one of the following statements is **False**?

(a) If f is differentiable then
$$\frac{d}{dx}(f(\sqrt{x})) = \frac{f'(x)}{2\sqrt{x}}$$
 for $x \neq 0$

- (b) The derivative of a polynomial is a polynomial
- (c) If $f(x) = (x^7 + x^2)^4$, then $f^{(29)}(x) = 0$
- (d) $\frac{d}{dx}(\tan^2 x) = \frac{d}{dx}(\sec^2 x)$
- (e) If $g(x) = x^6$, then $\lim_{x \to 1} \frac{g(x) g(1)}{x 1} = 6$

16. If
$$x = \frac{\sin(y)}{\sin(1+y)}$$
 then $\frac{dy}{dx} =$

- (a) $\frac{\sin^2(1+y)}{\sin(1)}$
- (b) $\sin^2(1+y)$
- (c) 1
- (d) $\sin(1+y)$
- (e) $\frac{\sin(y)}{\sin(1)}$

17. If $f(x) = (x-1)^2(x-2)^2(x-3)^2$, then $\frac{f'(0)}{f(0)} =$

- (a) $\frac{-11}{3}$
- (b) $\frac{-1}{3}$
- (c) -3
- (d) $\frac{-7}{3}$
- (e) 0

18. Let $f(x) = 4x - \sin(2x)$ and $g(x) = f^{-1}(x)$, then g'(0) =

- (a) $\frac{1}{2}$
- (b) $\frac{1}{4}$
- (c) $\frac{1}{3}$
- (d) 1
- (e) 0

19. If
$$y = \cos^{-1}\left(\frac{1+2\cos x}{2+\cos x}\right)$$
 and $0 < x < \frac{\pi}{2}$, then $\frac{dy}{dx} = \frac{1}{2}$

- (a) $\frac{\sqrt{3}}{2 + \cos x}$
- (b) $\frac{\sqrt{\cos x}}{2 + \sin x}$
- (c) $\frac{\sqrt{3-\cos x}}{2}$
- (d) $\frac{\sqrt{2 + \cos x}}{2\sin x}$
- (e) $\frac{\sqrt{\cos x}}{2 \sin x}$

- 20. If y = mx + b is the equation of a line parallel to the line $y = (\ln 2)x$ and tangent to the graph of $y = 2^{x+3}$, then m + b =
 - (a) $1 + 4 \ln 2$
 - (b) $1 \ln 2$
 - (c) $2 + 2 \ln 3$
 - (d) $\sqrt{2}$
 - (e) $3 + \sqrt{2}$