Math 101 (Term 162) - Quiz 2	
Student Name	Student ID:
Exercise 1 [5 points]	
Let $f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} \\ ax^2 - b \\ ax - b \end{cases}$	
Find the values of a and b that makes f continuous everywhere.	

Exercise 2 [3 points] Let $f(x) = \frac{x-4}{\sqrt{9x^2+2x+1}}$. Find the horizontal asymptotes of f.

Exercise 3 [2 points]

Below, each limit represents the derivative of some function f at some number a. State such f and a in each case:

- (a) $\lim_{h \to 0} \frac{\sqrt[4]{81+h}-3}{h}$ Then, a = f(x) =
- (b) $\lim_{t \to 1} \frac{t^4 + 2t 3}{t 1}$ Then, a = f(x) = f(x)