King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

 $\begin{array}{c} {\rm Math\ 101} \\ {\rm Exam\ I} \\ {\rm Term\ 162} \\ {\rm Sunday\ 12/03/2017} \\ {\rm Net\ Time\ Allowed:\ 120\ minutes} \end{array}$

MASTER VERSION

- 1. $\lim_{x \to \infty} \frac{\sqrt{9x^2 9}}{2x 6} =$
 - (a) $\frac{3}{2}$
 - (b) $\frac{2}{9}$
 - (c) -2
 - (d) 1
 - (e) $\frac{1}{3}$

- 2. The equations of the vertical asymptote(s) of $h(x) = \frac{x^2 1}{1 x 2x^2}$ is (are)
 - (a) $x = \frac{1}{2}$
 - (b) $x = -1, \ x = \frac{1}{2}$
 - (c) $x = -\frac{1}{4}$
 - (d) $y = -\frac{1}{2}$
 - (e) $x = -\frac{1}{2}, \ x = \frac{1}{2}$

- 3. The function $f(x) = \frac{\ln(2 + \cos e^x)}{x^2 4}$ is continuous for all x in the interval
 - (a) $(-\infty, -2) \cup (-2, 2) \cup (2, \infty)$
 - (b) $[0, \infty)$
 - (c) [-2, 2]
 - (d) $(-\infty,0) \cup (0,\infty)$
 - (e) $(-\infty, 0)$

- 4. Let $f(x) = \frac{x^3 + 3x^2 9x 27}{x^3 9x}$. If R is the number of **removable** discontinuities of f and I is the number of **infinite** discontinuities of f, then
 - (a) R = 2 and I = 1
 - (b) R = 1 and I = 2
 - (c) R = 0 and I = 3
 - (d) R = 3 and I = 0
 - (e) R = 3 and I = 3

5. If
$$\lim_{x\to 2} f(x) = 7$$
 and $\lim_{x\to 2} g(x) = 3$, then $\lim_{x\to 2} \frac{\sqrt{x+f(x)}}{|x-2|-(g(x))^2} =$

- (a) $-\frac{1}{3}$
- (b) $-\frac{2}{3}$
- (c) -1
- (d) 1
- (e) 0

6.
$$\lim_{x \to \infty} \left[\tan^{-1} \left(\frac{1}{e^{-x} - 1} \right) \right] =$$

- (a) $-\frac{\pi}{4}$
- (b) 0
- (c) $\frac{\pi}{4}$
- (d) $-\frac{\pi}{2}$
- (e) $\frac{\pi}{2}$

- 7. If $f(x) = \begin{cases} ax + 2b & \text{for } x \le 0 \\ x^2 + 3a b & \text{for } 0 < x \le 2 \text{ is a} \\ 3x 5 & \text{for } x > 2 \end{cases}$ continuous function everywhere, then f(1) = 1
 - (a) -2
 - (b) -5
 - (c) 3
 - (d) 1
 - $(e) \quad 0$

8. The largest number $\delta > 0$, such that if $0 < |x - \mathbf{10}| < \delta$, then $|\sqrt{19 - x} - 3| < 1$, is

(You may use the graph of $y = \sqrt{19 - x}$)

(b)
$$\delta = 7$$

(c)
$$\delta = 1$$

(d)
$$\delta = 3$$

(e)
$$\delta = 9$$

9. If
$$\lim_{x \to 1} \frac{f(x) - 4}{x - 1} = 8$$
, then $\lim_{x \to 1} \frac{f(x)}{x + 1}$

- (a) equals 2
- (b) equals 6
- (c) equals 8
- (d) equals 4
- (e) Does not exist

10. If
$$f(x) = \begin{cases} x^3 \sin \frac{1}{x} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$
, then

- (a) f'(0) = 0
- (b) f'(0) = 1
- (c) f'(0) = -1
- (d) $f'(0) = \frac{1}{2}$
- (e) f(x) is not differentiable at x = 0

11. Which one of the following statements is **TRUE**?

- (a) $e^x = 3 2x$ has one root in (0, 1)
- (b) If |f| is continuous at x = a, then f is continuous at x = a
- (c) If f is continuous at x = a, then f is differentiable at x = a
- (d) $x^2 = \cos x$ has no roots in $(-\pi, \pi)$
- (e) If f(x) = |x 6|, then f is not differentiable at x = 0

12. To prove that $\lim_{x\to 2} (2x-1) = 3$ by using the $\varepsilon - \delta$ definition of the limit, we find that for given $\varepsilon = 0.002$, the largest possible value for δ that can be used is

- (a) 0.001
- (b) 0.05
- (c) 0.002
- (d) 0.003
- (e) 0.02

13. The sum of all values of k, for which y=k is a horizontal asymptote to the graph of the function

asymptote to the graph of the function
$$f(x) = \begin{cases} \frac{2+\sqrt{x}}{2-\sqrt{x}} & \text{for } x>4\\ 1 & \text{for } \sqrt[3]{\frac{3}{8}} \le x \le 4\\ \left(\frac{x^3+x-3}{8x^3-3}\right)^{1/3} & \text{for } x<\sqrt[3]{\frac{3}{8}} \end{cases}$$

- to
- (a) $-\frac{1}{2}$
- (b) 1
- (c) 0
- (d) $\frac{3}{8}$
- (e) $-\frac{1}{3}$

- 14. $\lim_{x \to 0^+} \sqrt{x} e^{\sin\left(\frac{\pi}{x}\right)} =$
 - (a) 0
 - (b) 1
 - (c) $\frac{1}{e}$
 - (d) \sqrt{e}
 - (e) -1

- 15. Suppose f(x) is a differentiable function that satisfies the following f(x+y) = f(x) + f(y) + 2xy 1 for any real numbers x and y and $\lim_{x\to 0} \frac{f(x)-1}{x} = -2$. Then f'(x) =
 - (a) -2 + 2x
 - (b) -2
 - (c) -2 x
 - (d) 2x
 - (e) -2x

- 16. $\lim_{t \to 4} \frac{\frac{1}{2} \frac{1}{\sqrt{t}}}{t 4} =$
 - (a) $\frac{1}{16}$
 - (b) $\frac{1}{4}$
 - (c) $\frac{1}{8}$
 - (d) $\frac{3}{14}$
 - (e) $\frac{1}{2}$

17.
$$\lim_{x \to 1/3^+} [[3x]] =$$

(where [[x]] is the greatest integer less than or equal to x)

- (a) 1
- (b) 0
- (c) 2
- (d) -1
- (e) 3

18. Let a and b be real numbers. $\lim_{x\to -\infty} (\sqrt{x^2 + ax} - \sqrt{x^2 + bx}) =$

(a)
$$\frac{1}{2}(b-a)$$

- (b) $\frac{1}{\sqrt{2}}(a-b)$
- (c) 0
- (d) $\sqrt{a} \sqrt{b}$
- (e) $-\infty$

- 19. The equation of the tangent line to the curve $y = \frac{2}{1-3x}$ at the point with x-coordinate x = 0 is
 - (a) y = 6x + 2
 - (b) $y = \frac{1}{6}x + 2$
 - (c) y = 2x + 2
 - (d) $y = \frac{-1}{6}x + 2$
 - (e) y = 3x 3

- 20. If $f(x) = \begin{cases} \frac{1 \cos x}{\sin x} & \text{for } x < 0\\ \frac{(1+x)^2 1}{x} & \text{for } x > 0 \end{cases}$, then
 - (a) $\lim_{x\to 0} f(x)$ does not exist
 - (b) $\lim_{x \to 0} f(x) = \infty$
 - (c) $\lim_{x \to 0} f(x) = 1$
 - (d) $\lim_{x \to 0} f(x) = 0$
 - (e) $\lim_{x \to 0} f(x) = \frac{1}{2}$